ボーア模型の水分子 (H2O) の電子配置を視覚化するサンプルJAVAプログラム

化学結合のページに戻る
トップページ(2電子原子も含む新ボーア模型)

このプログラムは少し長いので、下に示すソースプログラムをコピーして、テキストエディタ(メモ帳など)にそのまま貼り付けて、コンパイルすれば簡単に実行できる。
このプログラムの class file name は watr なので、このデキストエディタを "watr.java" のファイル名で保存してコンパイルしてほしい。

このプログラムでは、原子核は灰色の円で示してある。
ここでは、新しい単位として ( 1 MM = 10-14 meter) を使っている。
テキストボックス内の電子の各座標 (+X (MM), +Y (MM), +Z (MM)) は、これらの原子核からの”相対的な”位置座標を示している。
(ele 0-5 は酸素原子核からの、 ele 6 は 水素原子核 0 (H0)からの、ele7 はH1 からの相対座標である。)
すべての電子の座標 (+X, +Y, +Z) は自由に変更することができる。
(テキストボックス内に値を入力して、Enter キーを押せばいい。)
"nuc (MM)" はこれらの核と電子の距離である。
V (eV) と T (eV) は各電子の位置エネルギーと運動エネルギーを示している。
tV (eV) は全位置エネルギーである。
ele 0-5 の CF は、中心方向への力を意味し、ele 6,7 のCF は H-O-H 平面への方向の力を意味する。
(fx, fy, fz) は CF を除いた残りの力の成分を意味する。
(FX, FY, FZ) は各原子核に作用する力の成分を意味する。
H0, On は H0 核方向、 O 核方向への力の成分を意味する。
Waves (wn) は1軌道に含まれるド。ブロイ波の数を示している。
スクロールバーの中から、O-H 結合長 (MM) を選択して、"O-H (MM)" ボタンをクリックすると、O-H の核間距離が変化する。
また、スクロールバーの中から角度を選択し、”angle” ボタンをクリックすると、H-O-H 角が変化する。


import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.util.Scanner;
public class watr extends JPanel     // virial theorem of H2O(water)
 {
  public static void main(String arg[])
 {
   JFrame frame = new JFrame("H2O (water)");
   J2DPanel j2dpanel = new J2DPanel();
   frame.getContentPane().add(j2dpanel); frame.setSize(1180,700);
   frame.setVisible(true); frame.setBackground(Color.black);
   frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);  
  }
  }
 class J2DPanel extends JPanel implements ActionListener
  {
    
    double pai=3.141592653589793; double epsi=8.85418781787346e-12;
   double h=6.62606896e-34; double elc=1.60217653e-19;
   double me=9.1093826e-31;  double suh=5200.0*5200.0; // suh=(Bohr radius)^2
 
    JTextField elp[][]=new JTextField[8][11];   // elp=each electron's parameters
     JTextField impho=new JTextField(7);        // impho= total V (eV)
    JTextField mmpho[][]=new JTextField[3][4];   // mmpho=each nuclear parameters

    JButton b1=new JButton("O-H (MM)");  JButton b2=new JButton("angle");
    String ope[]={"9000","9584","10000"};     // scrollbar of O-H distances
    JComboBox coom=new JComboBox(ope);   
     String ope2[]={"90.0","104.45","110.0"};   // scrollbar of H-O-H angles
    JComboBox coom2=new JComboBox(ope2);   

    double rtw=Math.sqrt(2); double rth=Math.sqrt(3); 
    double rsi=Math.sqrt(6); double rfi=Math.sqrt(5);
    double hpr[][]=new double[8][11]; double hpr2[][]=new double[8][11];
  
    double den=6.273;                           // den=central charge
    double lengt=9584.0; double angl=104.45;    // lengt=O-H distance, angl=H-O-H angle
     double lengt2=lengt*Math.sin(angl*0.5*pai/180.0);
     double lengt3=lengt*Math.cos(angl*0.5*pai/180.0);

                            //nux[n][0-2]=coordinate,  n=1,2,3: O , H0 , and H1 nuclei
    double nux[][]={{7857.00, 12500.00, 12500.00},
    {7857.0+lengt3, 12500.00-lengt2, 12500.00},
    {7857.0+lengt3, 12500.00+lengt2, 12500.00}}; 
                                                    
                             // te1=initial conditions of each electron
   double te1[][]={{3151,-3244, 0.0}, {3151, 3244, 0.0}, 
    {-3290, 3290, 0}, {-3290, -3290, 0}, 
    {0, 0, -4557}, {0,0, 4556}, 
    {-260.0, 319.0, -4535.0}, {-260.0, -319.0, 4535.0}};
  double te2[][]={{3214,-3215, 0}, {3214, 3215, 0.0}, 
    {-3284, 3293, -10}, {-3284, -3293, 10}, 
    {0, 0, -4562}, {0,0, 4562}, 
    {-162.0, 330.0, -4435.0}, {-162.0, -330.0, 4435.0}};
   double te3[][]={{3138,-3247, 0.0}, {3138, 3247, 0.0}, 
    {-3290, 3290, -20}, {-3290, -3290, 20}, 
    {0, 0, -4556}, {0,0, 4556}, 
    {-260.0, 330.0, -4650.0}, {-260.0, -330.0, 4650.0}};
   double te4[][]={{3120,-3240, 0.0}, {3120, 3240, 0.0}, 
    {-3290, 3290, -20}, {-3290, -3290, 20}, 
    {0, 0, -4557}, {0,0, 4557}, 
    {-260.0, 310.0, -4310.0}, {-260.0, -310.0, 4310.0}};
   double te5[][]={{3150,-3245, 0.0}, {3150, 3245, 0.0}, 
    {-3290, 3290, -20}, {-3290, -3290, 20}, 
    {0, 0, -4558}, {0,0, 4558}, 
    {-200.0, 300.0, -4800.0}, {-200.0, -300.0, 4800.0}};
   
  public J2DPanel()
 {
  setBackground(Color.black);
  JPanel p=new JPanel();
  p.setLayout(new GridLayout(11,12));
  int aaa=0; 
                                   
  for (int el=0; el <=7; el++) {    // elp[0-7][0-2]=textboxes of each electron's coordinate
  for (int pos=0; pos <=2; pos++) {
  elp[el][pos]=new JTextField(7); elp[el][pos].addActionListener(this);
  hpr[el][pos]=0.0;                
  }}
                                   
   for (int el=0; el <=7; el++) {       // elp[0-7][3-10]=textboxes of other parameters
  for (int pos=3; pos <=10; pos++) {
  elp[el][pos]=new JTextField(7);     
  hpr[el][pos]=0.0; 
  }}

   for (int el=0; el <=2; el++) {
   for (int pos=0; pos <=3; pos++) {
    mmpho[el][pos]=new JTextField(7);
   }}

                                        // layout

  String sihy[]={"eNo ", "+X(MM)", "+Y(MM)", "+Z(MM)", "nuc(MM)", 
   "V(eV)", "T(eV)", "Force", "fx ", "fy", "fz", "Waves"};
  for (int el=0; el <=11; el++) {
   p.add(new Label(sihy[el]));
  }
 
  for (int el=0; el <=7; el++) {       
  p.add(new Label("ele "+el+" "));
  for (int pos=0; pos <=10; pos++) {
  p.add(elp[el][pos]);
  }}

   p.add(new Label("O nuc "));
  for (int pos=0; pos <=3; pos++) {
  p.add(mmpho[0][pos]);  
  }    p.add(impho);
   p.add(new Label("H0nuc "));
  for (int pos=0; pos <=3; pos++) {
  p.add(mmpho[1][pos]);
  }  p.add(new Label(" -- "));

  p.add(new Label("H1nuc "));
  for (int pos=0; pos <=3; pos++) {
  p.add(mmpho[2][pos]);
  } p.add(new Label(" -- "));
  p.add(b1); p.add(coom); p.add(b2); p.add(coom2);
 
    for (int pos=0; pos <=1; pos++) {
  p.add(new Label(" -- "));
    } 
   coom.setSelectedItem("9584"); b1.addActionListener(this);
   coom2.setSelectedItem("104.45"); b2.addActionListener(this);

  add(p,"South");
  
   for (int el=0; el <=7; el++) {
   double nnuc=Math.sqrt(te1[el][0]*te1[el][0]+te1[el][1]*te1[el][1]+te1[el][2]*te1[el][2]);
   aaa=(int)(nnuc); 
   elp[el][3].setText(Integer.toString(aaa)); // show distance between nuclei and electrons 
    for (int jou=0; jou <=2; jou++) {        // hpr[0-7][0-2]=each electron's coordinate
    hpr[el][jou]=te1[el][jou]; 
    if (el < 6) {hpr[el][jou]=hpr[el][jou]+nux[0][jou];}
     if (el==6) {hpr[el][jou]=hpr[el][jou]+nux[1][jou];}
      if (el==7) {hpr[el][jou]=hpr[el][jou]+nux[2][jou];}
    elp[el][jou].setText(Integer.toString((int)(te1[el][jou])));
     }}
  }     // public J2DPanel() end
 

  public void actionPerformed(ActionEvent e) {  
    String ss;
    int RR=0; double Rf1,Rf2,Rf3; int teis=0;

    if (e.getSource() == b1) { RR=1;       // when internuclear distance change (b1 click)
   ss=(String)coom.getSelectedItem();
   if (ss=="9000") {lengt=9000;}  if (ss=="9584") {lengt=9584;} 
   if (ss=="10000") {lengt=10000;} 
    }

    if (e.getSource() == b2) { RR=1;       // when H-O-H angle change (b2 click)
   ss=(String)coom2.getSelectedItem();
   if (ss=="90.0") {angl=90.0;}  if (ss=="104.45") {angl=104.45;} 
   if (ss=="110.0") {angl=110.0;} 
    }

   if (RR==1) {
    lengt2=lengt*Math.sin(angl*0.5*pai/180.0); lengt3=lengt*Math.cos(angl*0.5*pai/180.0);         
    double nuux[][]={{7857.00, 12500.00, 12500.00},
    {7857.0+lengt3, 12500.00-lengt2, 12500.00},
    {7857.0+lengt3, 12500.00+lengt2, 12500.00}}; 
     for (int ett=0; ett <=2; ett++) {
     for (int sws=0; sws <=2; sws++) {
      nux[ett][sws]=nuux[ett][sws];
      }}
    
     for (int ett=0; ett <=7; ett++) {   // each electron's coordinate reset
     for (int sws=0; sws <=2; sws++) {
     Rf1=te1[ett][sws];
    if (lengt==9584 && angl==90.0) {Rf1=te2[ett][sws];}
    if (lengt==9584 && angl==110.0) {Rf1=te3[ett][sws];}
    if (lengt==9000 && angl==104.45) {Rf1=te4[ett][sws];}
    if (lengt==10000 && angl==104.45) {Rf1=te5[ett][sws];}
    elp[ett][sws].setText(Integer.toString((int)Rf1));
     }}
      }

    for (int ett=0; ett <=7; ett++) {    // when electron's positions change
    for (int sws=0; sws <=2; sws++) {             
    
    ss=elp[ett][sws].getText(); Rf1=Double.parseDouble(ss); 
   Rf2=0.0;  
                                      // change relative coordinate to absolute coordinate
   if (ett < 6) {Rf2=Rf1+nux[0][sws];}     
   if (ett==6) {Rf2=Rf1+nux[1][sws];}
   if (ett==7) {Rf2=Rf1+nux[2][sws];}
    Rf3=Rf2/71.428;                 // change MM to pixel
                               // upper and lower limits of coordinates
    if (Rf3 > 349 && sws==0) {Rf3=349; Rf2=Rf3*71.428; teis=1;}
    if (Rf3 > 349 && sws==2) {Rf3=349; Rf2=Rf3*71.428; teis=1;}
    if (Rf3 > 349 && sws==1) {Rf3=349; Rf2=Rf3*71.428; teis=1;}
    if (Rf3 < 1) {Rf3=1; Rf2=Rf3*71.428; teis=1;}
    hpr[ett][sws]=Rf2; 
   if (ett < 6) {Rf1=Rf2-nux[0][sws];}     
   if (ett==6) {Rf1=Rf2-nux[1][sws];}
   if (ett==7) {Rf1=Rf2-nux[2][sws];}
   if (teis==1) {elp[ett][sws].setText(Integer.toString((int)(Rf1)));}
    }}
   
   repaint();
  }

  public void update(Graphics g)
 {
  paint(g);
 }
 public void paintComponent(Graphics g)
 {
   
  double kro,krr,krk,kro2,krr2,krk2,pot,pota,potb,pot2,pota2,potb2,
  gx,gy,gz,ggx,ggy,ggz,ttav,toav;
  kro=0.0; krr=0.0; krk=0.0; kro2=0.0; krr2=0.0; krk2=0.0;
  int ex,ey,ez,xk,yk,zk; String ww,pyw;
  double rhp[][]= {{0,0,0,0,0,0},{0,0,0,0,0,0},{0,0,0,0,0,0},{0,0,0,0,0,0},
 {0,0,0,0,0,0},{0,0,0,0,0,0},{0,0,0,0,0,0},{0,0,0,0,0,0}};
  double rpp[][]= {{0,0,0},{0,0,0},{0,0,0},{0,0,0},{0,0,0},{0,0,0},{0,0,0},{0,0,0}};
  double mmp[][]={{0,0,0,0},{0,0,0,0},{0,0,0,0}};  
  double teqq[][]={{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}};
  
   double hevec[][]=new double[3][4];
    for (int jou=0; jou <=2; jou++) {
   hevec[0][jou]=nux[1][jou]-nux[0][jou];  // hevec[0] = O nuc - H0 nuc vector
   hevec[1][jou]=nux[2][jou]-nux[0][jou];  // hevec[1] = O nuc - H1 nuc vector
   }
                      // hevec[2][0-2] = vector perpendicular to H-O-H plane = cross product 0 x 1
   hevec[2][0]=hevec[0][1]*hevec[1][2]-hevec[0][2]*hevec[1][1];
   hevec[2][1]=hevec[0][2]*hevec[1][0]-hevec[0][0]*hevec[1][2];
   hevec[2][2]=hevec[0][0]*hevec[1][1]-hevec[0][1]*hevec[1][0];
                               // hevec[][3]=length of each vector
   hevec[2][3]=Math.sqrt(hevec[2][0]*hevec[2][0]+hevec[2][1]*hevec[2][1]+hevec[2][2]*hevec[2][2]);
   hevec[0][3]=Math.sqrt(hevec[0][0]*hevec[0][0]+hevec[0][1]*hevec[0][1]+hevec[0][2]*hevec[0][2]);
   hevec[1][3]=Math.sqrt(hevec[1][0]*hevec[1][0]+hevec[1][1]*hevec[1][1]+hevec[1][2]*hevec[1][2]);

   double noxx[]={0,0,0};           // noxx[0-2]=center of six valence electrons (0-5)
   for (int yp=0; yp <=5; yp++) { 
   for (int jou=0; jou <=2; jou++) {
   noxx[jou]=noxx[jou]+hpr[yp][jou];
    }}
    for (int jou=0; jou <=2; jou++) {
    noxx[jou]=noxx[jou]/6.0;
    }
                  // calculate hpr2[6,7][0-2]= symmetric positions of ele 6,7 with respect to H-O-H plane
   for (int yp=6; yp <=7; yp++) {                        
   gx=(hevec[2][0]*(hpr[yp][0]-nux[0][0])+hevec[2][1]*(hpr[yp][1]-nux[0][1])
  +hevec[2][2]*(hpr[yp][2]-nux[0][2]))/hevec[2][3];
    for (int jou=0; jou <=2; jou++) {
    hpr2[yp][jou]=hpr[yp][jou]-(gx*2.0*hevec[2][jou])/hevec[2][3];
    } }

   toav=0.0;                // toav=total potential energy (eV)
   
                                 // kro= distance between two electrons (6 and 7)
   kro=Math.sqrt((hpr[6][0]-hpr[7][0])*(hpr[6][0]-hpr[7][0])+
   (hpr[6][1]-hpr[7][1])*(hpr[6][1]-hpr[7][1])+
   (hpr[6][2]-hpr[7][2])*(hpr[6][2]-hpr[7][2]));
   if (kro==0) {kro=5000.0;}
                                 // pot=potential energy between electrons (6 and 7)
   pot=(elc*elc*6.241509e18)/(4*pai*epsi*kro*1.0e-14); 

                                // rhp[][3]=potential energy of each electron (eV)
   rhp[6][3]=rhp[6][3]+pot/2;  rhp[7][3]=rhp[7][3]+pot/2;
   toav=toav+pot;
   for (int jou=0; jou <=2; jou++) {     //ggx=force between two electrons (6 and 7)
   ggx=(suh*(hpr[6][jou]-hpr[7][jou]))/(kro*kro*kro);
                                       // rhp[][0-2]=force component of each electron
   rhp[6][jou]=rhp[6][jou]+ggx;  rhp[7][jou]=rhp[7][jou]-ggx;
    }
  

    for (int yp=0; yp <=5; yp++) {     // interaction between electrons (0-5) and (6,7)
    for (int kj=6; kj <=7; kj++) { 
    kro=Math.sqrt((hpr[yp][0]-hpr[kj][0])*(hpr[yp][0]-hpr[kj][0])+
   (hpr[yp][1]-hpr[kj][1])*(hpr[yp][1]-hpr[kj][1])+
   (hpr[yp][2]-hpr[kj][2])*(hpr[yp][2]-hpr[kj][2]));
   if (kro==0) {kro=5000.0;}

                   // kro2=distance between electrons (0-5) and symmetric positions of ele 6,7
     kro2=Math.sqrt((hpr[yp][0]-hpr2[kj][0])*(hpr[yp][0]-hpr2[kj][0])+
   (hpr[yp][1]-hpr2[kj][1])*(hpr[yp][1]-hpr2[kj][1])+
   (hpr[yp][2]-hpr2[kj][2])*(hpr[yp][2]-hpr2[kj][2]));
   if (kro2==0) {kro2=5000.0;}

    pot=(elc*elc*6.241509e18)/(4*pai*epsi*kro*1.0e-14); 
    pot2=(elc*elc*6.241509e18)/(4*pai*epsi*kro2*1.0e-14);
    rhp[yp][3]=rhp[yp][3]+pot/4.0+pot2/4.0; rhp[kj][3]=rhp[kj][3]+pot/2.0;
    toav=toav+pot;

     for (int jou=0; jou <=2; jou++) {
   ggx=(suh*(hpr[yp][jou]-hpr[kj][jou]))/(kro*kro*kro);
   ggy=(suh*(hpr[yp][jou]-hpr2[kj][jou]))/(kro2*kro2*kro2);
   rhp[yp][jou]=rhp[yp][jou]+ggx*0.5+ggy*0.5; rhp[kj][jou]=rhp[kj][jou]-ggx;
                   // rpp[0-5][0-2]= the sum of force acting on ele 0-5 from 3 nuclei and ele 6,7
   rpp[yp][jou]=rpp[yp][jou]+ggx*0.5+ggy*0.5; 
    }
    }}

  double ppot;
   for (int yp=0; yp <=5; yp++) {             
    for (int kj=0; kj <=5; kj++) { 
    if (yp < kj ) {
    kro=Math.sqrt((hpr[yp][0]-hpr[kj][0])*(hpr[yp][0]-hpr[kj][0])+
   (hpr[yp][1]-hpr[kj][1])*(hpr[yp][1]-hpr[kj][1])+
   (hpr[yp][2]-hpr[kj][2])*(hpr[yp][2]-hpr[kj][2]));
   if (kro==0) {kro=5000.0;}
     ppot=(elc*elc*6.241509e18)/(4*pai*epsi*kro*1.0e-14); 
    toav=toav+ppot;
   rhp[yp][3]=rhp[yp][3]+ppot/2.0; rhp[kj][3]=rhp[kj][3]+ppot/2.0;
                
                       // teqq[0-5][3] = potential energy only in oxygen atom
   teqq[yp][3]=teqq[yp][3]+ppot/2;  teqq[kj][3]=teqq[kj][3]+ppot/2;
    for (int jou=0; jou <=2; jou++) {
   ggx=(suh*(hpr[yp][jou]-hpr[kj][jou]))/(kro*kro*kro);
   rhp[yp][jou]=rhp[yp][jou]+ggx; rhp[kj][jou]=rhp[kj][jou]-ggx;     
  
                      // teqq[0-5][0-2] = force component only in oxygen atom
   teqq[yp][jou]=teqq[yp][jou]+ggx; teqq[kj][jou]=teqq[kj][jou]-ggx;
    } 
   }}}
  
    for (int rv=0; rv <=5; rv++) {      // interaction between noxx(center of ele 0-5) and ele0-5 
    kro=Math.sqrt((hpr[rv][0]-noxx[0])*(hpr[rv][0]-noxx[0])+
   (hpr[rv][1]-noxx[1])*(hpr[rv][1]-noxx[1])+
   (hpr[rv][2]-noxx[2])*(hpr[rv][2]-noxx[2]));
    if (kro == 0) {kro=5000.0;}   
       ppot=(elc*elc*den*6.241509e18)/(4*pai*epsi*kro*1.0e-14);
                                     // teqq[0-5][3] = potential energy only in oxygen atom
      teqq[rv][3]=teqq[rv][3]-ppot;
    for (int jou=0; jou <=2; jou++) {
     ggx=(suh*den*(hpr[rv][jou]-noxx[jou]))/(kro*kro*kro);
                                    // teqq[0-5][0-2] = force component only in oxygen atom
     teqq[rv][jou]=teqq[rv][jou]-ggx;
     }}

                                   // interaction between electrons and nuclei
   for (int rv=0; rv <=7; rv++) {         
                                          // -------------------- O nucleus (nux[0][0-2])
   kro=Math.sqrt((hpr[rv][0]-nux[0][0])*(hpr[rv][0]-nux[0][0])+
   (hpr[rv][1]-nux[0][1])*(hpr[rv][1]-nux[0][1])+
   (hpr[rv][2]-nux[0][2])*(hpr[rv][2]-nux[0][2])); kro2=1000.0;
    if (kro == 0) {kro=5000.0;}

                        // kro2 = distance between O nucleus and symmetric positions of ele 6,7
   if (rv > 5) {kro2=Math.sqrt((hpr2[rv][0]-nux[0][0])*(hpr2[rv][0]-nux[0][0])+
   (hpr2[rv][1]-nux[0][1])*(hpr2[rv][1]-nux[0][1])+
   (hpr2[rv][2]-nux[0][2])*(hpr2[rv][2]-nux[0][2])); 
    if (kro2 == 0) {kro2=5000.0;}
     }

    pot =-den/kro;               // show distance (nuc) between electron 0-5 and O nucleus               
   if (rv < 6) {ex=(int)(kro);  elp[rv][3].setText("nuc "+Integer.toString(ex));}
   for (int kj=0; kj <=2; kj++) {
   ggx=(suh*den*(hpr[rv][kj]-nux[0][kj]))/(kro*kro*kro); ggy=ggx;
   if (rv > 5) {ggy=(suh*den*(hpr2[rv][kj]-nux[0][kj]))/(kro2*kro2*kro2);}

                                // mmp[0][0-2] = force component acting on O nucleus
   mmp[0][kj]=mmp[0][kj]+ggx/2.0+ggy/2.0;  rhp[rv][kj]=rhp[rv][kj]-ggx;

                 // rpp[0-5][0-2]=the sum of force acting on ele 0-5 from 3 nuclei and ele 6,7
   if (rv < 6) {rpp[rv][kj]=rpp[rv][kj]-ggx;} 
   }
                                       // ---------------------------- H0 nucleus (nux[1][0-2])
   krr=Math.sqrt((hpr[rv][0]-nux[1][0])*(hpr[rv][0]-nux[1][0])+
    (hpr[rv][1]-nux[1][1])*(hpr[rv][1]-nux[1][1])+
    (hpr[rv][2]-nux[1][2])*(hpr[rv][2]-nux[1][2]));
   if (krr ==0) {krr=5000.0;}

   if (rv > 5) {krr2=Math.sqrt((hpr2[rv][0]-nux[1][0])*(hpr2[rv][0]-nux[1][0])+
   (hpr2[rv][1]-nux[1][1])*(hpr2[rv][1]-nux[1][1])+
   (hpr2[rv][2]-nux[1][2])*(hpr2[rv][2]-nux[1][2])); 
    if (krr2 == 0) {krr2=5000.0;}
     }

    pota=-1.0/krr;               // show distance (nuc) between electron 6 and H0 nucleus    
   if (rv==6) {ex=(int)(krr); elp[rv][3].setText("nuc "+Integer.toString(ex));}
   for (int kj=0; kj <=2; kj++) {
   ggx=(suh*(hpr[rv][kj]-nux[1][kj]))/(krr*krr*krr); ggy=ggx;
   if (rv > 5) {ggy=(suh*(hpr2[rv][kj]-nux[1][kj]))/(krr2*krr2*krr2);}

                               // mmp[1][0-2] = force component acting on H0 nucleus
   mmp[1][kj]=mmp[1][kj]+ggx/2.0+ggy/2.0;  rhp[rv][kj]=rhp[rv][kj]-ggx;

                    // rpp[0-5][0-2]=the sum of force acting on ele 0-5 from 3 nuclei and ele 6,7
   if (rv < 6) {rpp[rv][kj]=rpp[rv][kj]-ggx;}
   }

                                     // ---------------------------- H1 nucleus (nux[2][0-2])
   krk=Math.sqrt((hpr[rv][0]-nux[2][0])*(hpr[rv][0]-nux[2][0])+
   (hpr[rv][1]-nux[2][1])*(hpr[rv][1]-nux[2][1])+
   (hpr[rv][2]-nux[2][2])*(hpr[rv][2]-nux[2][2]));
   if (krk ==0) {krk=5000.0;} 

   if (rv > 5) {krk2=Math.sqrt((hpr2[rv][0]-nux[2][0])*(hpr2[rv][0]-nux[2][0])+
   (hpr2[rv][1]-nux[2][1])*(hpr2[rv][1]-nux[2][1])+
   (hpr2[rv][2]-nux[2][2])*(hpr2[rv][2]-nux[2][2])); 
    if (krk2 == 0) {krk2=5000.0;}
     }

    potb=-1.0/krk;             // show distance (nuc) between electron 7 and H1 nucleus     
   if (rv==7) {ex=(int)(krk);  elp[rv][3].setText("nuc "+Integer.toString(ex));}
   for (int kj=0; kj <=2; kj++) {
   ggx=(suh*(hpr[rv][kj]-nux[2][kj]))/(krk*krk*krk); ggy=ggx;
    if (rv > 5) {ggy=(suh*(hpr2[rv][kj]-nux[2][kj]))/(krk2*krk2*krk2);}
                              // mmp[2][0-2] = force component acting on H1 nucleus
   mmp[2][kj]=mmp[2][kj]+ggx/2.0+ggy/2.0;  rhp[rv][kj]=rhp[rv][kj]-ggx;

                     // rpp[0-5][0-2]=the sum of force acting on ele 0-5 from 3 nuclei and ele 6,7
   if (rv < 6) {rpp[rv][kj]=rpp[rv][kj]-ggx;}
   } 

                                // ttav=potential energy between one electron and three nuclei
   ttav= (elc*elc*6.241509e18*(pot+pota+potb))/(4*pai*epsi*1.0e-14);
   
   rhp[rv][3]=rhp[rv][3]+ttav;  toav=toav+ttav;  
   
                             // rhp[][5]= potential energy between electron and other nuclei
   if (rv < 6) {rhp[rv][5]=(elc*elc*6.241509e18*(pota+potb))/(4*pai*epsi*1.0e-14); }
   if (rv == 6) {rhp[rv][5]=(elc*elc*6.241509e18*(pot+potb))/(4*pai*epsi*1.0e-14);}
   if (rv == 7) {rhp[rv][5]=(elc*elc*6.241509e18*(pot+pota))/(4*pai*epsi*1.0e-14);}
   }         
  
                                  // kro=distance between O and H0 nuclei
  kro=Math.sqrt((nux[0][0]-nux[1][0])*(nux[0][0]-nux[1][0])+
  (nux[0][1]-nux[1][1])*(nux[0][1]-nux[1][1])+
   (nux[0][2]-nux[1][2])*(nux[0][2]-nux[1][2]));
                                        // forces between O and H0 nuclei
  ggx=(suh*den*(nux[1][0]-nux[0][0]))/(kro*kro*kro); ggy=(suh*den*(nux[1][1]-nux[0][1]))/(kro*kro*kro); 
  ggz=(suh*den*(nux[1][2]-nux[0][2]))/(kro*kro*kro); 
   mmp[0][0]=mmp[0][0]-ggx; mmp[0][1]=mmp[0][1]-ggy; mmp[0][2]=mmp[0][2]-ggz;
   mmp[1][0]=mmp[1][0]+ggx; mmp[1][1]=mmp[1][1]+ggy; mmp[1][2]=mmp[1][2]+ggz;
                                       // krr=distance between O and H1 nuclei
   krr=Math.sqrt((nux[0][0]-nux[2][0])*(nux[0][0]-nux[2][0])+
   (nux[0][1]-nux[2][1])*(nux[0][1]-nux[2][1])+
   (nux[0][2]-nux[2][2])*(nux[0][2]-nux[2][2]));
                                      // forces between O and H1 nuclei
  ggx=(suh*den*(nux[2][0]-nux[0][0]))/(krr*krr*krr); ggy=(suh*den*(nux[2][1]-nux[0][1]))/(krr*krr*krr); 
  ggz=(suh*den*(nux[2][2]-nux[0][2]))/(krr*krr*krr);
   mmp[0][0]=mmp[0][0]-ggx; mmp[0][1]=mmp[0][1]-ggy; mmp[0][2]=mmp[0][2]-ggz;
   mmp[2][0]=mmp[2][0]+ggx; mmp[2][1]=mmp[2][1]+ggy; mmp[2][2]=mmp[2][2]+ggz;

   krk=nux[2][1]-nux[1][1];
                                      // forces between H0 and H1 nuclei
   ggy=(suh)/(krk*krk); 
   mmp[1][1]=mmp[1][1]-ggy; mmp[2][1]=mmp[2][1]+ggy; 

                                    // pot=repulsive potential energy among three nuclei (eV)
   pot=(elc*elc*6.241509e18*((den/kro)+(den/krr)+(1.0/krk)))/(4*pai*epsi*1.0e-14);
   toav=toav+pot;
   ex=(int)(100*toav); ggx=ex/100.0;
   impho.setText("tV "+Double.toString(ggx));   // show total V to two decimal places
 
                      // distribute repulsive V among nuclei to each electron based on rhp[][5]
   double hiwa=0.0;              
   for (int rv=0; rv <=7; rv++) { hiwa=hiwa+rhp[rv][5]; }
   for (int rv=0; rv <=7; rv++) {
   rhp[rv][3]=rhp[rv][3]+(pot*rhp[rv][5])/hiwa;
  
   ex=(int)(100*rhp[rv][3]); ggx=ex/100.0;
   elp[rv][4].setText("V "+Double.toString(ggx));    // show each electron's V (=rhp[][3])
   }

   gx=0.0;                       // gx=sum of each potential energy
   for (int rv=0; rv <=7; rv++) { gx=gx+rhp[rv][3]; }
                                 
   gy=-toav*0.5;              // gy=total kinetic energy
                             // distribute kinetic energy to each electron based on rhp[][3]
   for (int rv=0; rv <=7; rv++) {       
    gz=(gy*rhp[rv][3])/gx; rhp[rv][4]=gz;   // rhp[][4]=each electron's kinetic energy
   ex=(int)(100*gz); gz=ex/100.0; elp[rv][5].setText("T "+Double.toString(gz)); 
    }                       

    for (int rv=0; rv <=5; rv++) {    // show force component acting on electron 0-5
 
    gx=Math.sqrt(rpp[rv][0]*rpp[rv][0]+rpp[rv][1]*rpp[rv][1]+rpp[rv][2]*rpp[rv][2]);
                    // gy=force component (CF) in the direction of rpp = inner product of rhp and rpp
    gy=(rhp[rv][0]*rpp[rv][0]+rhp[rv][1]*rpp[rv][1]+rhp[rv][2]*rpp[rv][2])/gx;
    ex=(int)(1000*gy); ww="CF ";
    elp[rv][6].setText(ww+Integer.toString(ex));
    for (int jou=0; jou <=2; jou++) {
    gz=rhp[rv][jou]-(gy*rpp[rv][jou])/gx;
    ex=(int)(1000*gz);                   // show force component other than CF
    elp[rv][jou+7].setText(Integer.toString(ex));
     }
    }


  for (int rv=6; rv <=7; rv++) {    // show force component acting on electron 6 and 7

    // gy= force component(CF) of ele6,7 peperndicular to H-O-H plane = inner product of rhp and hevec[2]
  gy=(rhp[rv][0]*hevec[2][0]+rhp[rv][1]*hevec[2][1]+rhp[rv][2]*hevec[2][2])/hevec[2][3];
  ex=(int)(1000*gy); ww="CF ";
  elp[rv][6].setText(ww+Integer.toString(ex));
   for (int jou=0; jou <=2; jou++) {
    gz=rhp[rv][jou]-(gy*hevec[2][jou])/hevec[2][3];
    ex=(int)(1000*gz);            // show force component other than CF
    elp[rv][jou+7].setText(Integer.toString(ex));
     }
  }
                              // mmp[0][3] = force component of O nucleus toward H0 nucleus 
  mmp[0][3]=(mmp[0][0]*hevec[0][0]+mmp[0][1]*hevec[0][1]+mmp[0][2]*hevec[0][2])/hevec[0][3];
                             // mmp[1][3] = force component of H0 nucleus toward O nucleus
  mmp[1][3]=-(mmp[1][0]*hevec[0][0]+mmp[1][1]*hevec[0][1]+mmp[1][2]*hevec[0][2])/hevec[0][3];
                            // mmp[2][3] = force component of H1 nucleus toward O nucleus
  mmp[2][3]=-(mmp[2][0]*hevec[1][0]+mmp[2][1]*hevec[1][1]+mmp[2][2]*hevec[1][2])/hevec[1][3];
  

    for (int rv=0; rv <=2; rv++) {
    for (int jou=0; jou <=3; jou++) {      // show mmp[0-2][0-3] = force acting on each nucleus
    ex=(int)(1000*mmp[rv][jou]); ww=" ";
   if (jou==0) {ww="FX=";}
   if (jou==1) {ww="FY=";}
   if (jou==2) {ww="FZ=";}
    if (jou==3 && rv==0) {ww="H0 ";}   if (jou==3 && rv > 0) {ww="0n ";}   
    mmpho[rv][jou].setText(ww+Integer.toString(ex));
    }}
                                                                          
   for (int rv=0; rv <=7; rv++) {         // show de Broglie wave of each electron
   
   gz=Math.sqrt(rhp[rv][0]*rhp[rv][0]+rhp[rv][1]*rhp[rv][1]+rhp[rv][2]*rhp[rv][2]);
   
                 // electrons 0-5 use forces (=teqq[0-5][0-2]) only in oxygen atom
   if (rv < 6) {gz=Math.sqrt(teqq[rv][0]*teqq[rv][0]+teqq[rv][1]*teqq[rv][1]+teqq[rv][2]*teqq[rv][2]);}

   gy=(gz*elc*elc)/(4*pai*epsi*suh*1.0e-28);    // gy=force (N)
   gx=Math.sqrt((2*rhp[rv][4]*1.602177e-19)/me);  // gx=velocity (m/s) from kinetic energy

                // electrons 0-5 use potential V (and T) only in oxygen atom
   if (rv < 6) {gx=Math.sqrt((-teqq[rv][3]*1.602177e-19)/me);}

   ggx=(me*gx*gx)/gy;              // ggx= "tenporary" radius (m)
   ggy=(2*pai*ggx*me*gx)/h;       // ggy (wn) = number of de Broglie's waves contained in one orbit

  ex=(int)(ggy*1000);   ggy=ex/1000.0;    // show wn to three decimal places
  elp[rv][10].setText("wn "+Double.toString(ggy));  }


                          // --------------------- show picture
   int nmx[][]=new int[3][3]; int hpk[][]=new int[8][4]; 

  for (int yp=0; yp <=2; yp++) {
  for (int kj=0; kj <=2; kj++) {     // change MM to pixel in nuclei
  nmx[yp][kj]=(int)(nux[yp][kj]/71.428);
  }}
  for (int yp=0; yp <=7; yp++) {
  for (int kj=0; kj <=2; kj++) {     // change MM to pixel in electrons
  hpk[yp][kj]=(int)(hpr[yp][kj]/71.428);
  }}

  g.clearRect(9,299,1170,699);
  g.setColor(Color.cyan); g.drawLine(375,310,375,660); g.drawLine(735,310,735,660);

  g.setColor(Color.lightGray);         // show three nuclei
  g.fillOval(nmx[0][0]+10,650-nmx[0][1],20,20);g.fillOval(370+nmx[0][0],650-nmx[0][2],20,20);
  g.fillOval(730+nmx[0][1],650-nmx[0][2],20,20);
  g.fillOval(13+nmx[1][0],653-nmx[1][1],14,14);g.fillOval(373+nmx[1][0],653-nmx[1][2],14,14);
  g.fillOval(733+nmx[1][1],653-nmx[1][2],14,14);
  g.fillOval(13+nmx[2][0],653-nmx[2][1],14,14);g.fillOval(373+nmx[2][0],653-nmx[2][2],14,14);
  g.fillOval(733+nmx[2][1],653-nmx[2][2],14,14); 

  g.setColor(Color.white);           // show electron 0 (particle)
  g.fillOval(hpk[0][0]+13,653-hpk[0][1],14,14); 
  g.fillOval(hpk[0][0]+373,653-hpk[0][2],14,14);
  g.fillOval(hpk[0][1]+733,653-hpk[0][2],14,14);
  
                                      // show electron 1
  g.fillOval(hpk[1][0]+13,653-hpk[1][1],14,14); 
  g.fillOval(hpk[1][0]+373,653-hpk[1][2],14,14);
  g.fillOval(hpk[1][1]+733,653-hpk[1][2],14,14);
                                     
  g.setColor(Color.red);              // show electron 2
  g.fillOval(hpk[2][0]+13,653-hpk[2][1],14,14);
  g.fillOval(hpk[2][0]+373,653-hpk[2][2],14,14);
  g.fillOval(hpk[2][1]+733,653-hpk[2][2],14,14);
  
                                      // show electron 3
  g.fillOval(hpk[3][0]+13,653-hpk[3][1],14,14);
  g.fillOval(hpk[3][0]+373,653-hpk[3][2],14,14);
  g.fillOval(hpk[3][1]+733,653-hpk[3][2],14,14);
    
                                       // show electron 4
  g.setColor(Color.green);
  g.fillOval(hpk[4][0]+13,653-hpk[4][1],14,14);
  g.fillOval(hpk[4][0]+373,653-hpk[4][2],14,14);
  g.fillOval(hpk[4][1]+733,653-hpk[4][2],14,14);
    
                                        // show electron 5
  g.fillOval(hpk[5][0]+13,653-hpk[5][1],14,14);
  g.fillOval(hpk[5][0]+373,653-hpk[5][2],14,14);
  g.fillOval(hpk[5][1]+733,653-hpk[5][2],14,14);
   
                                       // show electron 6
  g.setColor(Color.pink);
  g.fillOval(hpk[6][0]+13,653-hpk[6][1],14,14);
  g.fillOval(hpk[6][0]+373,653-hpk[6][2],14,14);
  g.fillOval(hpk[6][1]+733,653-hpk[6][2],14,14);
   
                                        // show electron 7
  g.fillOval(hpk[7][0]+13,653-hpk[7][1],14,14);
  g.fillOval(hpk[7][0]+373,653-hpk[7][2],14,14);
  g.fillOval(hpk[7][1]+733,653-hpk[7][2],14,14);
  
    
  for (int rw=0; rw <=7; rw++) {         // show each electron's number
  g.setColor(Color.blue);
  g.drawString(Integer.toString(rw),hpk[rw][0]+17,665-hpk[rw][1]);
  g.drawString(Integer.toString(rw),hpk[rw][0]+377,665-hpk[rw][2] );
  g.drawString(Integer.toString(rw),hpk[rw][1]+737,665-hpk[rw][2] );
  }

   }
   }