化学結合のページに戻る
トップページ(2電子原子も含む新ボーア模型)
このプログラムは少し長いので、下に示すソースプログラムをコピーして、テキストエディタ(メモ帳など)にそのまま貼り付けて、コンパイルすれば簡単に実行できる。
このプログラムの class file name は NH3 なので、このデキストエディタを "NH3.java" のファイル名で保存してコンパイルしてほしい。
このプログラムでは、原子核は灰色の円で示してある。
ここでは、新しい単位として ( 1 MM = 10-14 meter) を使っている。
テキストボックス内の電子の各座標 (+X (MM), +Y (MM), +Z (MM)) は、これらの原子核からの”相対的な”位置座標を示している。
(ele 0-4 は窒素原子核からの、 ele 5 は 水素原子核 0 (H0)からの、ele6 はH1 からの、ele7 は H2 からの相対座標である。)
すべての電子の座標 (+X, +Y, +Z) は自由に変更することができる。
(テキストボックス内に値を入力して、Enter キーを押せばいい。)
"nuc (MM)" はこれらの核と電子の距離である。
V (eV) と T (eV) は各電子の位置エネルギーと運動エネルギーを示している。
tV (eV) は全位置エネルギーである。
ele 0-4 の CF は、中心方向への力を意味し、ele 5,6,7 のCF は 各 N-H line 方向への力(= N-H line に垂直な力)を意味する。
(fx, fy, fz) は CF を除いた残りの力の成分を意味する。
(FX, FY, FZ) は各原子核に作用する力の成分を意味する。
H0 核の Nf は N 核方向への力の成分を意味する。
Waves (wn) は1軌道に含まれるド。ブロイ波の数を示している。
スクロールバーの中から、N-H 結合長 (MM) を選択して、"N-H (MM)" ボタンをクリックすると、N-H の核間距離が変化する。
また、スクロールバーの中から角度を選択し、”angle” ボタンをクリックすると、H-N-H 角が変化する。
”e5,6,7” ボタンをクリックすると、 電子 5, 6, 7が対称的に配置される。
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.util.Scanner;
public class NH3 extends JPanel // virial theorem of ammonia
{
public static void main(String arg[])
{
JFrame frame = new JFrame("NH3 (ammonia)");
J2DPanel j2dpanel = new J2DPanel();
frame.getContentPane().add(j2dpanel); frame.setSize(1180,700);
frame.setVisible(true); frame.setBackground(Color.black);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
}
}
class J2DPanel extends JPanel implements ActionListener
{
double pai=3.141592653589793; double epsi=8.85418781787346e-12;
double h=6.62606896e-34; double elc=1.60217653e-19;
double me=9.1093826e-31; double suh=5200.0*5200.0; // suh=(Bohr radius)^2
JTextField elp[][]=new JTextField[8][11]; JTextField impho=new JTextField(7);
JTextField mmpho[][]=new JTextField[4][4];
JButton b1=new JButton("N-H (MM)"); JButton b2=new JButton("angle");
String ope[]={"9000","10170","11000"}; // scrollbar of N-H distances
JComboBox coom=new JComboBox(ope);
String ope2[]={"100.0","107.8","110.0"}; // scrollbar of H-N-H angles
JComboBox coom2=new JComboBox(ope2);
JButton b3=new JButton("e5,6,7");
int mar=0; // mar=marking
double rtw=Math.sqrt(2); double rth=Math.sqrt(3);
double rsi=Math.sqrt(6); double rfi=Math.sqrt(5);
double hpr[][]=new double[8][11]; double hpr2[][]=new double[8][3];
double den=5.25; // den = central charge
double lengt=10170.0; double angl=107.8;
double lengt2=lengt*Math.sin(angl*0.5*pai/180.0); // legth2= half of H-H distance
double lengt3=lengt*Math.cos(angl*0.5*pai/180.0);
double lengt4=lengt2/rth; double lengt5=Math.sqrt(lengt3*lengt3-lengt4*lengt4);
double lengt6=(lengt2*2.0)/rth;
// nux[n][0-2]=nuclear coordinate: n=0 (N), n=1 (H0), n=2 (H1), n=3 (H2)
double nux[][]={{12500.00, 12500.00, 17143, den},
{12500.0+lengt6, 12500.0, 17143-lengt5, 1.0},
{12500.0-0.5*lengt6, 12500.0+lengt6*rth*0.5, 17143.0-lengt5, 1.0},
{12500.0-0.5*lengt6, 12500.0-lengt6*rth*0.5, 17143.0-lengt5, 1.0}};
// te1=initial conditions of each electron
double te1[][]={{4870.0, 0.0, -2350}, {-2685.0, 3685.0, -2488.0},
{-2685.0, -3685.0, -2488.0}, {595.0, 3780.0, 3950.0},
{595.0, -3780.0, 3950.0}, {340.0, -4380.0, -370.0},
{3790.0, 2506.0, -400.0}, {-4020.0, 1770.0, -450.0}};
double te2[][]={{4800.0, 0, -2160}, {-2540.0, 3750.0, -2400.0},
{-2540.0, -3750.0, -2400.0}, {490.0, 3800.0, 4150.0},
{450.0, -3800.0, 4100.0}, {800.0, -4200.0, -500.0},
{3470.0, 2480.0, -440.0}, {-3700.0, 1545.0, -450.0}};
double te3[][]={{4820.0, 0, -2510}, {-2695.0, 3685.0, -2570.0},
{-2695.0, -3685.0, -2570.0}, {616.0, 3780.0, 3940.0},
{600.0, -3780.0, 3940.0}, {350.0, -4280.0, -370.0},
{3680.0, 2500.0, -440.0}, {-4000.0, 1700.0, -450.0}};
double te4[][]={{4880.0, 0, -2380}, {-2695.0, 3685.0, -2470.0},
{-2695.0, -3685.0, -2470.0}, {650.0, 3780.0, 3940.0},
{650.0, -3780.0, 3940.0}, {290.0, -4400.0, -370.0},
{3820.0, 2600.0, -350.0}, {-4020.0, 1800.0, -450.0}};
double te5[][]={{4870.0, 0, -2300}, {-2695.0, 3660.0, -2550.0},
{-2695.0, -3650.0, -2560.0}, {530.0, 3740.0, 3940.0},
{520.0, -3740.0, 3940.0}, {220.0, -4480.0, -260.0},
{3890.0, 2400.0, -300.0}, {-4000.0, 2026.0, -300.0}};
public J2DPanel()
{
setBackground(Color.black);
JPanel p=new JPanel();
p.setLayout(new GridLayout(11,12));
int aaa=0;
for (int el=0; el <=7; el++) { // elp[0-7][0-2]=textboxes of each electron's coordinate
for (int pos=0; pos <=2; pos++) {
elp[el][pos]=new JTextField(7); elp[el][pos].addActionListener(this);
hpr[el][pos]=0.0;
}}
for (int el=0; el <=7; el++) { // elp[0-7][3-10]=textboxes of other parameters
for (int pos=3; pos <=10; pos++) {
elp[el][pos]=new JTextField(7);
hpr[el][pos]=0.0;
}}
for (int el=0; el <=3; el++) {
for (int pos=0; pos <=3; pos++) {
mmpho[el][pos]=new JTextField(7);
}}
// layout
String sihy[]={"eNo ", "+X(MM)", "+Y(MM)", "+Z(MM)", "nuc(MM)",
"V(eV)", "T(eV)", "Force", "fx ", "fy", "fz", "Waves"};
for (int el=0; el <=11; el++) {
p.add(new Label(sihy[el]));
}
for (int el=0; el <=7; el++) {
p.add(new Label("ele "+el+" "));
for (int pos=0; pos <=10; pos++) {
p.add(elp[el][pos]);
}}
p.add(new Label("N nuc "));
for (int pos=0; pos <=2; pos++) {
p.add(mmpho[0][pos]);
}
p.add(new Label(" -- ")); p.add(impho);
p.add(new Label("H0nuc "));
for (int pos=0; pos <=3; pos++) {
p.add(mmpho[1][pos]);
}
p.add(b3);
p.add(new Label("H1nuc "));
for (int pos=0; pos <=2; pos++) {
p.add(mmpho[2][pos]);
}
p.add(new Label("H2nuc "));
for (int pos=0; pos <=2; pos++) {
p.add(mmpho[3][pos]);
}
p.add(b1); p.add(coom); p.add(b2); p.add(coom2);
coom.setSelectedItem("10170"); b1.addActionListener(this);
coom2.setSelectedItem("107.8"); b2.addActionListener(this); b3.addActionListener(this);
add(p,"South");
for (int el=0; el <=7; el++) {
double nnuc=Math.sqrt(te1[el][0]*te1[el][0]+te1[el][1]*te1[el][1]+te1[el][2]*te1[el][2]);
aaa=(int)(nnuc);
elp[el][3].setText(Integer.toString(aaa)); // show distance between nuclei and electrons
for (int jou=0; jou <=2; jou++) { // hpr[0-7][0-2]=each electron's coordinate
hpr[el][jou]=te1[el][jou];
if (el < 5) {hpr[el][jou]=hpr[el][jou]+nux[0][jou];}
if (el==5) {hpr[el][jou]=hpr[el][jou]+nux[1][jou];}
if (el==6) {hpr[el][jou]=hpr[el][jou]+nux[2][jou];}
if (el==7) {hpr[el][jou]=hpr[el][jou]+nux[3][jou];}
elp[el][jou].setText(Integer.toString((int)(te1[el][jou])));
}}
} // public J2DPanel() end
public void actionPerformed(ActionEvent e) {
String ss;
int RR=0; double Rf1,Rf2,Rf3,Rf4; int teis=0; mar=0;
if (e.getSource() == b1) { RR=1; // when internuclear distance change (b1 click)
ss=(String)coom.getSelectedItem();
if (ss=="9000") {lengt=9000;} if (ss=="10170") {lengt=10170;}
if (ss=="11000") {lengt=11000;}
}
if (e.getSource() == b2) { RR=1; // when H-N-H angle change (b2 click)
ss=(String)coom2.getSelectedItem();
if (ss=="100.0") {angl=100.0;} if (ss=="107.8") {angl=107.8;}
if (ss=="110.0") {angl=110.0;}
}
if (RR==1) {
double lengt2=lengt*Math.sin(angl*0.5*pai/180.0);
double lengt3=lengt*Math.cos(angl*0.5*pai/180.0);
double lengt4=lengt2/rth; double lengt5=Math.sqrt(lengt3*lengt3-lengt4*lengt4);
double lengt6=(lengt2*2.0)/rth;
double nuux[][]={{12500.00, 12500.00, 17143},
{12500.0+lengt6, 12500.0, 17143-lengt5},
{12500.0-0.5*lengt6, 12500.0+lengt6*rth*0.5, 17143.0-lengt5},
{12500.0-0.5*lengt6, 12500.0-lengt6*rth*0.5, 17143.0-lengt5}};
for (int ett=0; ett <=3; ett++) {
for (int sws=0; sws <=2; sws++) { // nuclear coordinate reset
nux[ett][sws]=nuux[ett][sws];
}}
for (int ett=0; ett <=7; ett++) { // each electron's coordinate reset
for (int sws=0; sws <=2; sws++) {
Rf1=te1[ett][sws];
if (lengt==9000 && angl==107.8) {Rf1=te2[ett][sws];}
if (lengt==10170 && angl==100.0) {Rf1=te3[ett][sws];}
if (lengt==10170 && angl==110.0) {Rf1=te4[ett][sws];}
if (lengt==11000 && angl==107.8) {Rf1=te5[ett][sws];}
elp[ett][sws].setText(Integer.toString((int)Rf1));
}}
}
for (int ett=0; ett <=7; ett++) { // when electron's positions change
for (int sws=0; sws <=2; sws++) {
ss=elp[ett][sws].getText(); Rf1=Double.parseDouble(ss);
Rf2=0.0;
// change relative coordinate to absolute coordinate
if (ett < 5) {Rf2=Rf1+nux[0][sws];}
if (ett == 5) {Rf2=Rf1+nux[1][sws];}
if (ett==6) {Rf2=Rf1+nux[2][sws];}
if (ett==7) {Rf2=Rf1+nux[3][sws];}
hpr[ett][sws]=Rf2;
}}
if (e.getSource()==b3 ) {mar=1; } // when clicl b3 button
repaint();
}
public void update(Graphics g)
{
paint(g);
}
public void paintComponent(Graphics g)
{
double kro,krr,krk,kro2,krr2,krk2,kkk,kkk2, pot,pota,potb,
pot2,pota2,potb2,potc,potc2,gx,gy,gz,ggx,ggy,ggz,ttav,toav;
kro=0.0; krr=0.0; krk=0.0; kro2=0.0; krr2=0.0; krk2=0.0; kkk=0.0; kkk2=0.0;
int ex,ey,ez,xk,yk,zk; String ww,pyw;
double rhp[][]= {{0,0,0,0,0,0},{0,0,0,0,0,0},{0,0,0,0,0,0},{0,0,0,0,0,0},
{0,0,0,0,0,0},{0,0,0,0,0,0},{0,0,0,0,0,0},{0,0,0,0,0,0}};
double rpp[][]= {{0,0,0},{0,0,0},{0,0,0},{0,0,0},{0,0,0},{0,0,0},{0,0,0},{0,0,0}};
double mmp[][]={{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}};
double teqq[][]={{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}};
double noxx[]={0,0,0,0};
if (mar==1) { // arrange electrons 5,6,7 symmetrically
double cor=Math.cos(120.0*pai/180.0); double sor=Math.sin(120.0*pai/180.0);
hpr[6][2]=hpr[5][2]-nux[0][2]; hpr[7][2]=hpr[5][2]-nux[0][2];
gx=hpr[5][0]-nux[0][0]; gy=hpr[5][1]-nux[0][1];
// rotate x,y components of ele 5 by 120 and 240 degrees
ggx=cor*gx-sor*gy; ggy=sor*gx+cor*gy; hpr[6][0]=ggx; hpr[6][1]=ggy;
cor=Math.cos(240.0*pai/180.0); sor=Math.sin(240.0*pai/180.0);
ggx=cor*gx-sor*gy; ggy=sor*gx+cor*gy; hpr[7][0]=ggx; hpr[7][1]=ggy;
for (int yp=6; yp <=7; yp++) {
for (int jou=0; jou <=2; jou++) {
hpr[yp][jou]=hpr[yp][jou]+nux[0][jou]; gz=0.0;
if (yp==6) {gz=hpr[yp][jou]-nux[2][jou];}
if (yp==7) {gz=hpr[yp][jou]-nux[3][jou];}
elp[yp][jou].setText(Integer.toString((int)gz));
}}
}
// noxx[0-2] = center of electrons 0-4
for (int yp=0; yp <=4; yp++) {
for (int jou=0; jou <=2; jou++) {
noxx[jou]=noxx[jou]+hpr[yp][jou];
}}
for (int jou=0; jou <=2; jou++) {
noxx[jou]=noxx[jou]/5.0;
}
// calculate hpr2[5-7][0-2]= symmetric positions of ele 5,6,7 with respect to N-H lines
for (int yp=5; yp <=7; yp++) {
gx=nux[yp-4][0]-nux[0][0]; gy=nux[yp-4][1]-nux[0][1]; gz=nux[yp-4][2]-nux[0][2];
pot=Math.sqrt(gx*gx+gy*gy+gz*gz);
// pota=inner product of vectors N-H and N-ele5-7
pota=((hpr[yp][0]-nux[0][0])*gx+(hpr[yp][1]-nux[0][1])*gy+(hpr[yp][2]-nux[0][2])*gz)/pot;
for (int jou=0; jou <=2; jou++) {
ggy=((nux[yp-4][jou]-nux[0][jou])*pota)/pot;
ggz=ggy-(hpr[yp][jou]-nux[0][jou]); // ggz=vector perpendicular to N-H line
hpr2[yp][jou]=hpr[yp][jou]+2*ggz;
}
}
toav=0.0; // toav=total potential energy
double ppot;
for (int yp=0; yp <=4; yp++) { // interaction among electrons 0-4
for (int kj=0; kj <=4; kj++) {
if (yp < kj ) { // kro= distance between two electrons (0-4)
kro=Math.sqrt((hpr[yp][0]-hpr[kj][0])*(hpr[yp][0]-hpr[kj][0])+
(hpr[yp][1]-hpr[kj][1])*(hpr[yp][1]-hpr[kj][1])+
(hpr[yp][2]-hpr[kj][2])*(hpr[yp][2]-hpr[kj][2]));
if (kro==0) {kro=5000.0;}
// ppot = repulsive potential energy (eV) between electrons (0-4)
ppot=(elc*elc*6.241509e18)/(4*pai*epsi*kro*1.0e-14);
toav=toav+ppot;
// rhp[0-7][3]=potential energy of each electron (eV)
rhp[yp][3]=rhp[yp][3]+ppot/2.0; rhp[kj][3]=rhp[kj][3]+ppot/2.0;
// teqq[0-4][3] = potential energy (eV) only in nitrogen atom
teqq[yp][3]=teqq[yp][3]+ppot/2; teqq[kj][3]=teqq[kj][3]+ppot/2;
for (int jou=0; jou <=2; jou++) {
//ggx=force between two electrons (0-4)
ggx=(suh*(hpr[yp][jou]-hpr[kj][jou]))/(kro*kro*kro);
// rhp[0-7][0-2]=force component of each electron
rhp[yp][jou]=rhp[yp][jou]+ggx; rhp[kj][jou]=rhp[kj][jou]-ggx;
// teqq[0-5][0-2] = force component only in nitrogen atom
teqq[yp][jou]=teqq[yp][jou]+ggx; teqq[kj][jou]=teqq[kj][jou]-ggx;
}
}}}
for (int yp=0; yp <=4; yp++) { // interaction between ele (0-4) and ele (5-7)
for (int kj=5; kj <=7; kj++) {
kro=Math.sqrt((hpr[yp][0]-hpr[kj][0])*(hpr[yp][0]-hpr[kj][0])+
(hpr[yp][1]-hpr[kj][1])*(hpr[yp][1]-hpr[kj][1])+
(hpr[yp][2]-hpr[kj][2])*(hpr[yp][2]-hpr[kj][2]));
if (kro==0) {kro=5000.0;}
// kro2=distance between electrons (0-4) and symmetric positions of ele (5-7)
kro2=Math.sqrt((hpr[yp][0]-hpr2[kj][0])*(hpr[yp][0]-hpr2[kj][0])+
(hpr[yp][1]-hpr2[kj][1])*(hpr[yp][1]-hpr2[kj][1])+
(hpr[yp][2]-hpr2[kj][2])*(hpr[yp][2]-hpr2[kj][2]));
if (kro2==0) {kro2=5000.0;}
pot=(elc*elc*6.241509e18)/(4*pai*epsi*kro*1.0e-14);
pot2=(elc*elc*6.241509e18)/(4*pai*epsi*kro2*1.0e-14);
rhp[yp][3]=rhp[yp][3]+pot/4.0+pot2/4.0; rhp[kj][3]=rhp[kj][3]+pot/2.0;
toav=toav+pot;
for (int jou=0; jou <=2; jou++) {
ggx=(suh*(hpr[yp][jou]-hpr[kj][jou]))/(kro*kro*kro);
ggy=(suh*(hpr[yp][jou]-hpr2[kj][jou]))/(kro2*kro2*kro2);
rhp[yp][jou]=rhp[yp][jou]+ggx*0.5+ggy*0.5; rhp[kj][jou]=rhp[kj][jou]-ggx;
// rpp[0-4][0-2]= the sum of force acting on ele 0-4 from 4 nuclei and ele 5-7
rpp[yp][jou]=rpp[yp][jou]+ggx*0.5+ggy*0.5;
}
}}
for (int yp=5; yp <=7; yp++) { // interaction among electrons (5-7)
for (int kj=5; kj <=7; kj++) {
if (yp < kj ) {
kro=Math.sqrt((hpr[yp][0]-hpr[kj][0])*(hpr[yp][0]-hpr[kj][0])+
(hpr[yp][1]-hpr[kj][1])*(hpr[yp][1]-hpr[kj][1])+
(hpr[yp][2]-hpr[kj][2])*(hpr[yp][2]-hpr[kj][2]));
if (kro==0) {kro=5000.0;}
pot=(elc*elc*6.241509e18)/(4*pai*epsi*kro*1.0e-14);
rhp[yp][3]=rhp[yp][3]+pot/2.0; rhp[kj][3]=rhp[kj][3]+pot/2.0;
toav=toav+pot;
for (int jou=0; jou <=2; jou++) {
ggx=(suh*(hpr[yp][jou]-hpr[kj][jou]))/(kro*kro*kro);
rhp[yp][jou]=rhp[yp][jou]+ggx; rhp[kj][jou]=rhp[kj][jou]-ggx;
}
}}}
for (int rv=0; rv <=4; rv++) { // interaction between noxx(center of ele 0-4) and ele0-4
kro=Math.sqrt((hpr[rv][0]-noxx[0])*(hpr[rv][0]-noxx[0])+
(hpr[rv][1]-noxx[1])*(hpr[rv][1]-noxx[1])+
(hpr[rv][2]-noxx[2])*(hpr[rv][2]-noxx[2]));
if (kro == 0) {kro=5000.0;}
ppot=(elc*elc*den*6.241509e18)/(4*pai*epsi*kro*1.0e-14);
teqq[rv][3]=teqq[rv][3]-ppot; // teqq[0-4][3] = potential energy only in nitrogen atom
for (int jou=0; jou <=2; jou++) {
ggx=(suh*den*(hpr[rv][jou]-noxx[jou]))/(kro*kro*kro);
teqq[rv][jou]=teqq[rv][jou]-ggx; // teqq[0-4][0-2] = force component only in nitrogen atom
}}
// interaction between electrons and nuclei
for (int rv=0; rv <=7; rv++) {
// ---------------- N nucleus (nux[0][0-2])
kro=Math.sqrt((hpr[rv][0]-nux[0][0])*(hpr[rv][0]-nux[0][0])+
(hpr[rv][1]-nux[0][1])*(hpr[rv][1]-nux[0][1])+
(hpr[rv][2]-nux[0][2])*(hpr[rv][2]-nux[0][2])); kro2=1000.0;
if (kro == 0) {kro=5000.0;}
// kro2 = distance between N nucleus and symmetric positions of ele 5-7
if (rv > 4) {kro2=Math.sqrt((hpr2[rv][0]-nux[0][0])*(hpr2[rv][0]-nux[0][0])+
(hpr2[rv][1]-nux[0][1])*(hpr2[rv][1]-nux[0][1])+
(hpr2[rv][2]-nux[0][2])*(hpr2[rv][2]-nux[0][2]));
if (kro2 == 0) {kro2=5000.0;}
}
pot =-den/kro; // ttav= potential energy between each electron (0-7) and N nucleus
ttav= (elc*elc*6.241509e18*pot)/(4*pai*epsi*1.0e-14);
rhp[rv][3]=rhp[rv][3]+ttav; toav=toav+ttav;
// show distance (nuc) between electron 0-4 and N nucleus
if (rv < 5) {ex=(int)(kro); elp[rv][3].setText("nuc "+Integer.toString(ex));}
for (int kj=0; kj <=2; kj++) {
ggx=(suh*den*(hpr[rv][kj]-nux[0][kj]))/(kro*kro*kro); ggy=ggx;
if (rv > 4) {ggy=(suh*den*(hpr2[rv][kj]-nux[0][kj]))/(kro2*kro2*kro2);}
// mmp[0][0-2] = force component acting on N nucleus
mmp[0][kj]=mmp[0][kj]+ggx/2.0+ggy/2.0; rhp[rv][kj]=rhp[rv][kj]-ggx;
// rpp[0-4][0-2]=the sum of force acting on ele 0-4 from 4 nuclei and ele 5-7
if (rv < 5) {rpp[rv][kj]=rpp[rv][kj]-ggx; }
}
// --------------------- H0 nucleus (nux[1][0-2])
krr=Math.sqrt((hpr[rv][0]-nux[1][0])*(hpr[rv][0]-nux[1][0])+
(hpr[rv][1]-nux[1][1])*(hpr[rv][1]-nux[1][1])+
(hpr[rv][2]-nux[1][2])*(hpr[rv][2]-nux[1][2])); krr2=1000.0;
if (krr ==0) {krr=5000.0;}
if (rv > 4) {krr2=Math.sqrt((hpr2[rv][0]-nux[1][0])*(hpr2[rv][0]-nux[1][0])+
(hpr2[rv][1]-nux[1][1])*(hpr2[rv][1]-nux[1][1])+
(hpr2[rv][2]-nux[1][2])*(hpr2[rv][2]-nux[1][2]));
if (krr2 == 0) {krr2=5000.0;}
}
pota=-1.0/krr;
ttav= (elc*elc*6.241509e18*pota)/(4*pai*epsi*1.0e-14);
rhp[rv][3]=rhp[rv][3]+ttav; toav=toav+ttav;
// show distance (nuc) between electron 5 and H0 nucleus
if (rv==5) {ex=(int)(krr); elp[rv][3].setText("nuc "+Integer.toString(ex));}
for (int kj=0; kj <=2; kj++) {
ggx=(suh*(hpr[rv][kj]-nux[1][kj]))/(krr*krr*krr); ggy=ggx;
if (rv > 4) {ggy=(suh*(hpr2[rv][kj]-nux[1][kj]))/(krr2*krr2*krr2);}
// mmp[1][0-2] = force component acting on H0 nucleus
mmp[1][kj]=mmp[1][kj]+ggx/2.0+ggy/2.0; rhp[rv][kj]=rhp[rv][kj]-ggx;
if (rv < 5) {rpp[rv][kj]=rpp[rv][kj]-ggx;}
}
// ---------------------------- H1 nucleus (nux[2][0-2])
krk=Math.sqrt((hpr[rv][0]-nux[2][0])*(hpr[rv][0]-nux[2][0])+
(hpr[rv][1]-nux[2][1])*(hpr[rv][1]-nux[2][1])+
(hpr[rv][2]-nux[2][2])*(hpr[rv][2]-nux[2][2])); krk2=1000.0;
if (krk ==0) {krk=5000.0;}
if (rv > 4) {krk2=Math.sqrt((hpr2[rv][0]-nux[2][0])*(hpr2[rv][0]-nux[2][0])+
(hpr2[rv][1]-nux[2][1])*(hpr2[rv][1]-nux[2][1])+
(hpr2[rv][2]-nux[2][2])*(hpr2[rv][2]-nux[2][2]));
if (krk2 == 0) {krk2=5000.0;}
}
potb=-1.0/krk;
ttav= (elc*elc*6.241509e18*potb)/(4*pai*epsi*1.0e-14);
rhp[rv][3]=rhp[rv][3]+ttav; toav=toav+ttav;
// show distance (nuc) between electron 6 and H1 nucleus
if (rv==6) {ex=(int)(krk); elp[rv][3].setText("nuc "+Integer.toString(ex));}
for (int kj=0; kj <=2; kj++) {
ggx=(suh*(hpr[rv][kj]-nux[2][kj]))/(krk*krk*krk); ggy=ggx;
if (rv > 4) {ggy=(suh*(hpr2[rv][kj]-nux[2][kj]))/(krk2*krk2*krk2);}
// mmp[2][0-2] = force component acting on H1 nucleus
mmp[2][kj]=mmp[2][kj]+ggx/2.0+ggy/2.0; rhp[rv][kj]=rhp[rv][kj]-ggx;
if (rv < 5) {rpp[rv][kj]=rpp[rv][kj]-ggx;}
}
// ------------------------- H2 nucleus (nux[3][0-2])
kkk=Math.sqrt((hpr[rv][0]-nux[3][0])*(hpr[rv][0]-nux[3][0])+
(hpr[rv][1]-nux[3][1])*(hpr[rv][1]-nux[3][1])+
(hpr[rv][2]-nux[3][2])*(hpr[rv][2]-nux[3][2])); kkk2=1000.0;
if (kkk ==0) {kkk=5000.0;}
if (rv > 4) {kkk2=Math.sqrt((hpr2[rv][0]-nux[3][0])*(hpr2[rv][0]-nux[3][0])+
(hpr2[rv][1]-nux[3][1])*(hpr2[rv][1]-nux[3][1])+
(hpr2[rv][2]-nux[3][2])*(hpr2[rv][2]-nux[3][2]));
if (kkk2 == 0) {kkk2=5000.0;}
}
potc=-1.0/kkk;
ttav= (elc*elc*6.241509e18*potc)/(4*pai*epsi*1.0e-14);
rhp[rv][3]=rhp[rv][3]+ttav; toav=toav+ttav;
// show distance (nuc) between electron 7 and H2 nucleus
if (rv==7) {ex=(int)(kkk); elp[rv][3].setText("nuc "+Integer.toString(ex));}
for (int kj=0; kj <=2; kj++) {
ggx=(suh*(hpr[rv][kj]-nux[3][kj]))/(kkk*kkk*kkk); ggy=ggx;
if (rv > 4) {ggy=(suh*(hpr2[rv][kj]-nux[3][kj]))/(kkk2*kkk2*kkk2);}
// mmp[3][0-2] = force component acting on H2 nucleus
mmp[3][kj]=mmp[3][kj]+ggx/2.0+ggy/2.0; rhp[rv][kj]=rhp[rv][kj]-ggx;
if (rv < 5) {rpp[rv][kj]=rpp[rv][kj]-ggx;}
}
// rhp[][5]= potential energy between electron and other nuclei
if (rv < 5) {rhp[rv][5]=(elc*elc*6.241509e18*(pota+potb+potc))/(4*pai*epsi*1.0e-14); }
if (rv == 5) {rhp[rv][5]=(elc*elc*6.241509e18*(pot+potb+potc))/(4*pai*epsi*1.0e-14);}
if (rv == 6) {rhp[rv][5]=(elc*elc*6.241509e18*(pot+pota+potc))/(4*pai*epsi*1.0e-14);}
if (rv == 7) {rhp[rv][5]=(elc*elc*6.241509e18*(pot+pota+potb))/(4*pai*epsi*1.0e-14);}
}
potc=0.0;
for (int rv=0; rv <=3; rv++) { // interaction among four nuclei
for (int el=0; el <=3; el++) {
if (rv > el) {
kro=Math.sqrt((nux[rv][0]-nux[el][0])*(nux[rv][0]-nux[el][0])+
(nux[rv][1]-nux[el][1])*(nux[rv][1]-nux[el][1])+
(nux[rv][2]-nux[el][2])*(nux[rv][2]-nux[el][2]));
// nux[rv][3] = positive charge of each nucleus
ttav=(elc*elc*6.241509e18*nux[rv][3]*nux[el][3])/(4*pai*epsi*kro*1.0e-14);
// potc = repulsive potential energy among four nuclei
toav=toav+ttav; potc=potc+ttav;
for (int jou=0; jou <=2; jou++) {
// ggx= repulsive force between nuclei
ggx=(suh*nux[rv][3]*nux[el][3]*(nux[rv][jou]-nux[el][jou]))/(kro*kro*kro);
mmp[rv][jou]=mmp[rv][jou]+ggx; mmp[el][jou]=mmp[el][jou]-ggx;
}
}
}}
ex=(int)(100*toav); ggx=ex/100.0;
impho.setText("tV "+Double.toString(ggx)); // show total V to two decimal places
// distribute repulsive V among nuclei to each electron based on rhp[][5]
double hiwa=0.0;
for (int rv=0; rv <=7; rv++) { hiwa=hiwa+rhp[rv][5]; }
for (int rv=0; rv <=7; rv++) {
rhp[rv][3]=rhp[rv][3]+(potc*rhp[rv][5])/hiwa;
ex=(int)(100*rhp[rv][3]); ggx=ex/100.0;
elp[rv][4].setText("V "+Double.toString(ggx)); // show each electron's V (=rhp[][3])
}
gx=0.0; // gx=sum of each potential energy
for (int rv=0; rv <=7; rv++) { gx=gx+rhp[rv][3]; }
gy=-toav*0.5; // gy=total kinetic energy
// distribute kinetic energy to each electron based on rhp[][3]
for (int rv=0; rv <=7; rv++) {
gz=(gy*rhp[rv][3])/gx; rhp[rv][4]=gz; // rhp[][4]=each electron's kinetic energy
ex=(int)(100*gz); gz=ex/100.0; elp[rv][5].setText("T "+Double.toString(gz));
}
for (int rv=0; rv <=4; rv++) { // show force component acting on elctrons 0-4
gx=Math.sqrt(rpp[rv][0]*rpp[rv][0]+rpp[rv][1]*rpp[rv][1]+rpp[rv][2]*rpp[rv][2]);
// gy=force component (CF) in the direction of rpp = inner product of rhp and rpp
gy=(rhp[rv][0]*rpp[rv][0]+rhp[rv][1]*rpp[rv][1]+rhp[rv][2]*rpp[rv][2])/gx;
ex=(int)(1000*gy); ww="CF ";
elp[rv][6].setText(ww+Integer.toString(ex));
for (int jou=0; jou <=2; jou++) {
gz=rhp[rv][jou]-(gy*rpp[rv][jou])/gx;
ex=(int)(1000*gz); // show force component other than CF
elp[rv][jou+7].setText(Integer.toString(ex));
}
}
for (int rv=5; rv <=7; rv++) { // show force component acting on electron 5-7
// ggy=length of N-H vector
ggy=Math.sqrt((nux[0][0]-nux[rv-4][0])*(nux[0][0]-nux[rv-4][0])+
(nux[0][1]-nux[rv-4][1])*(nux[0][1]-nux[rv-4][1])+(nux[0][2]-nux[rv-4][2])*(nux[0][2]-nux[rv-4][2]));
// gy = inner product of vectors N-H and N-ele5-7
gy=((nux[0][0]-hpr[rv][0])*(nux[0][0]-nux[rv-4][0])+
(nux[0][1]-hpr[rv][1])*(nux[0][1]-nux[rv-4][1])+(nux[0][2]-hpr[rv][2])*(nux[0][2]-nux[rv-4][2]))/ggy;
double ttj[][]=new double[3][4];
for (int jou=0; jou <=2; jou++) {
// ttj[][0-2]=vector perpendicular to each N-H line
ttj[rv-5][jou]=(gy*(nux[rv-4][jou]-nux[0][jou]))/ggy-(hpr[rv][jou]-nux[0][jou]);
}
ggz=Math.sqrt(ttj[rv-5][0]*ttj[rv-5][0]+ttj[rv-5][1]*ttj[rv-5][1]+ttj[rv-5][2]*ttj[rv-5][2]);
// gz= force component (CF) in the direction of ttj = inner product of rhp and ttj
gz=(rhp[rv][0]*ttj[rv-5][0]+rhp[rv][1]*ttj[rv-5][1]+rhp[rv][2]*ttj[rv-5][2])/ggz;
ex=(int)(1000*gz); ww="CF ";
elp[rv][6].setText(ww+Integer.toString(ex));
for (int jou=0; jou <=2; jou++) { // show force component other than CF
gx=rhp[rv][jou]-(gz*ttj[rv-5][jou])/ggz;
ex=(int)(1000*gx); elp[rv][jou+7].setText(Integer.toString(ex));
}
}
for (int rv=0; rv <=3; rv++) {
for (int jou=0; jou <=2; jou++) { // show mmpho[0-3][0-2]= force acting on each nucleus
ex=(int)(1000*mmp[rv][jou]); ww=" ";
if (jou==0) {ww="FX=";}
if (jou==1) {ww="FY=";}
if (jou==2) {ww="FZ=";}
mmpho[rv][jou].setText(ww+Integer.toString(ex));
}}
// ggy=distance between N and H0 nuclei
ggy=Math.sqrt((nux[0][0]-nux[1][0])*(nux[0][0]-nux[1][0])+
(nux[0][1]-nux[1][1])*(nux[0][1]-nux[1][1])+(nux[0][2]-nux[1][2])*(nux[0][2]-nux[1][2]));
// ggz=force component of H0 nucleus toward N nucleus
ggz=(mmp[1][0]*(nux[0][0]-nux[1][0])+mmp[1][1]*(nux[0][1]-nux[1][1])+mmp[1][2]*(nux[0][2]-nux[1][2]))/ggy;
mmpho[1][3].setText("Nf"+Integer.toString((int)(1000*ggz)));
for (int rv=0; rv <=7; rv++) { // show de Broglie wave of each electron
gz=Math.sqrt(rhp[rv][0]*rhp[rv][0]+rhp[rv][1]*rhp[rv][1]+rhp[rv][2]*rhp[rv][2]);
// electrons 0-4 use forces (=teqq[0-4][0-2]) only in nitrogen atom
if (rv < 5) {gz=Math.sqrt(teqq[rv][0]*teqq[rv][0]+teqq[rv][1]*teqq[rv][1]+teqq[rv][2]*teqq[rv][2]);
}
gy=(gz*elc*elc)/(4*pai*epsi*suh*1.0e-28); // gy=force (N)
gx=Math.sqrt((2*rhp[rv][4]*1.602177e-19)/me); // gx=velocity (m/s) from kinetic energy
// electrons 0-4 use potential V (and T) only in nitrogen atom
if (rv < 5) { gx=Math.sqrt((-teqq[rv][3]*1.602177e-19)/me); }
ggx=(me*gx*gx)/gy; // ggx= "tenporary" radius (m)
ggy=(2*pai*ggx*me*gx)/h; // ggy (wn) = number of de Broglie's waves contained in one orbit
ex=(int)(ggy*1000); ggy=ex/1000.0; // show wn to three decimal places
elp[rv][10].setText("wn "+Double.toString(ggy)); }
// --------------------- show picture
int nmx[][]=new int[4][3]; int hpk[][]=new int[8][4];
for (int yp=0; yp <=3; yp++) {
for (int kj=0; kj <=2; kj++) { // change MM to pixel in nuclei
nmx[yp][kj]=(int)(nux[yp][kj]/71.428);
}}
for (int yp=0; yp <=7; yp++) {
for (int kj=0; kj <=2; kj++) { // change MM to pixel in electrons
hpk[yp][kj]=(int)(hpr[yp][kj]/71.428);
if (hpk[yp][kj] > 349) {hpk[yp][kj]=349;} // upper and lower limit
if (hpk[yp][kj] < 1) {hpk[yp][kj]=1;}
}}
g.clearRect(9,299,1170,699);
g.setColor(Color.cyan); g.drawLine(375,310,375,660); g.drawLine(735,310,735,660);
g.setColor(Color.lightGray); // show four nuclei
g.fillOval(nmx[0][0]+10,650-nmx[0][1],20,20);g.fillOval(370+nmx[0][0],650-nmx[0][2],20,20);
g.fillOval(730+nmx[0][1],650-nmx[0][2],20,20);
g.fillOval(13+nmx[1][0],653-nmx[1][1],14,14);g.fillOval(373+nmx[1][0],653-nmx[1][2],14,14);
g.fillOval(733+nmx[1][1],653-nmx[1][2],14,14);
g.fillOval(13+nmx[2][0],653-nmx[2][1],14,14);g.fillOval(373+nmx[2][0],653-nmx[2][2],14,14);
g.fillOval(733+nmx[2][1],653-nmx[2][2],14,14);
g.fillOval(13+nmx[3][0],653-nmx[3][1],14,14);g.fillOval(373+nmx[3][0],653-nmx[3][2],14,14);
g.fillOval(733+nmx[3][1],653-nmx[3][2],14,14);
g.setColor(Color.white); // show electron 0 (particle)
g.fillOval(hpk[0][0]+13,653-hpk[0][1],14,14);
g.fillOval(hpk[0][0]+373,653-hpk[0][2],14,14);
g.fillOval(hpk[0][1]+733,653-hpk[0][2],14,14);
// show electron 1
g.fillOval(hpk[1][0]+13,653-hpk[1][1],14,14);
g.fillOval(hpk[1][0]+373,653-hpk[1][2],14,14);
g.fillOval(hpk[1][1]+733,653-hpk[1][2],14,14);
g.setColor(Color.red); // show electron 2
g.fillOval(hpk[2][0]+13,653-hpk[2][1],14,14);
g.fillOval(hpk[2][0]+373,653-hpk[2][2],14,14);
g.fillOval(hpk[2][1]+733,653-hpk[2][2],14,14);
// show electron 3
g.fillOval(hpk[3][0]+13,653-hpk[3][1],14,14);
g.fillOval(hpk[3][0]+373,653-hpk[3][2],14,14);
g.fillOval(hpk[3][1]+733,653-hpk[3][2],14,14);
// show electron 4
g.setColor(Color.green);
g.fillOval(hpk[4][0]+13,653-hpk[4][1],14,14);
g.fillOval(hpk[4][0]+373,653-hpk[4][2],14,14);
g.fillOval(hpk[4][1]+733,653-hpk[4][2],14,14);
// show electron 5
g.fillOval(hpk[5][0]+13,653-hpk[5][1],14,14);
g.fillOval(hpk[5][0]+373,653-hpk[5][2],14,14);
g.fillOval(hpk[5][1]+733,653-hpk[5][2],14,14);
// show electron 6
g.setColor(Color.pink);
g.fillOval(hpk[6][0]+13,653-hpk[6][1],14,14);
g.fillOval(hpk[6][0]+373,653-hpk[6][2],14,14);
g.fillOval(hpk[6][1]+733,653-hpk[6][2],14,14);
// show electron 7
g.fillOval(hpk[7][0]+13,653-hpk[7][1],14,14);
g.fillOval(hpk[7][0]+373,653-hpk[7][2],14,14);
g.fillOval(hpk[7][1]+733,653-hpk[7][2],14,14);
for (int rw=0; rw <=7; rw++) { // show each electron's number
g.setColor(Color.blue);
g.drawString(Integer.toString(rw),hpk[rw][0]+17,665-hpk[rw][1]);
g.drawString(Integer.toString(rw),hpk[rw][0]+377,665-hpk[rw][2] );
g.drawString(Integer.toString(rw),hpk[rw][1]+737,665-hpk[rw][2] );
}
}
}