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Nuxnerical Values for Hydrogen Fine Structure*
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Bethe's "average excitation potentials" for states 1s through 4p of hydrogen are calculated numerically.
These lead to values of the e0 S~—n0 I'7, level shifts in hydrogen for F0=3 and 4 of SH(3) =314.690~0.047
Mc/sec and Sn(4) = 132.998+0.020 Mc/sec, which are 1.44 Mc/sec and 0.85 Mc/sec larger than previous
estimates. For no=2, a value of Sn(2) =1057.21+0.16 Mc/sec is obtained, which is in close agreement
with previous calculation. In conjunction with this work, the oscillator strengths f(rto4, ml) are obtained
for F0= 1, 2, 3, and 4; m&50; and all values of l0 and l. A generalization of the Wigner-Kirkwood sum rule
is derived.
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'HE "average excitation potentials" of the 2s and The oscillator strength is given by'
2p levels of hydrogen were calculated several

years ago by Bethe, Brown, and Stehn. ' All spectro-
scopic investigations of higher states have been based

np p7n )—
on the assumption that these potentials are nearly
independent of the principal quantum number np. The -0, otherwise;
present paper extends the calculations from is through
the 4p level in order to determine the exact values of
the average excitation energies in anticipation of
microwave measurements now being made by Sanders
and Lamb which will yield to a high degree of accuracy
the level shift for np=3. and a is the first Bohr radius.

The formula' for the energy shift of a hydrogen level ~e define
nplp, with fixed Coulomb field and Z=1 is for s states

and for states lp/0
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where

The values of g(stplp, ss) are then given by

g (1s,rt) = (16/res vP) y (rt, 1),

g(2s, tt) = (16/tsovso) (ts' —1)y(st, 2),

g(2p, n) = (4/9ts'vs') [8(st'—1)+st'vs]y (rt, 2),

(9a)

(9b)

(9c)

g(3s, rt) = (16/729m'vs') (rt' 1) (7st' —27)' (est)3))— (9d)
P

g(3P,tt) = (128/2187rtrvso) [18(res—1) (res 4)—
+(I'—3)']y (rt,3), (9e)

Ct;= 1/(le+1) for j=is+1/2,

Ctt ———1/to for j lp =1/2, — (2a)

n is the fine structure constant; Ry„ is the Rydberg
energy for in6nite nuclear mass; and m is the electronic
mass.

Bethe's average excitation energy kp may be evalu-

ated from the expression'

g(3d, ts) = (256/18 225rt vs ) (rts 1)[6(rt——4)

+Novo]y (tt,3), (9f)

g (4s&ss) = (1/36 864 "ts4)v(rt' 1) (23rt4——288sss

68' n4 9

with the energy change in Rydberg units:

where
v (rt, rto) = (Eo Eo)/Ry„. —

vnp= v(m~rtp) ~

y(st, top) = [(ts—no)/(st+rtp)]'".

(9i)
* Supported in part by the joint program of the Once of Naval

Research and the U. S. Atomic Energy Commission.' Bethe, Brown, and Stehn, Phys. Rev. 77, 370 (1950).
2 See, for example, H. Kuhn and G. W. Series, Proc. Roy. Soc

(London) A202, 127 (1950).

(9))

4 H. A. Bethe, Zaldblch der Physih (Verlag Julius Springer,
Berlin, 1933), second edition, Vol. 24, Part 1, pp. 434—443.
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g f(rsplp, rsl) =1.
nl

Also, one has a generalization derived by Vinti

Q g(rsplp, nl) =3(ls,0)
nl

(13)

These sums, together with the corresponding partial
sum rules given in the Appendix, were calculated along

4 M. Stobbe, Ann. Physik 7, 661 (1930).' J. P. Vinti, Phys. Rev. 41, 432 (1932).

For large e ()50), the values are taken as

g(1s,n) =0 29. 3050m s+0 19. 5rs ', (10a)

g(2s, l) =0.343514m '+0.114N s, (10b)

g(2P, rs) =0 31.4887n s+1 33.81 s, (10c)

g(3s,n) =0.390182n s+0.110m ', (10d)

g(3p, n) =0.403453m—s+1.594m —', (10e)

g(3d,n) =0.280293m—'+3.636n ', (10f)

g(4s,n)=0.433493rs s+0.267N ', (10g)

g(4P, rs) =0 4580.86n s+1 829rs. s . (10h)

For transitions to the continuum, the quasi-principal
quantum number e is de6ned by

E =+Ay„/rs',

and the summation over n is replaced by an integration
over dv. The oscillator strength for transitions into an
interval dv of the continuous spectrum df/dv is then
given by (5) with the discrete-discrete matrix element

(6) replaced by the discrete-continuum matrix element
which Stobbe' calls C(v). Then

dg(1s)/dv=8vr sK(e, 1), (12a)

dg(2s)/dv=2vs '(4+3vs ')K(rs, 2), (12b)

dg(2p)/dv = (2/3) vs s(3+2vs ')K(rs, 2), (12c)

dg(3s)/dv= (8/81) vs '(81+96v +208v,—'/9
+128vs s/81)K(rr, 3), (12d)

dg(3p)/dv= (64/729) vs '(27+26vs '

+28vs '/9)K(n, 3), (12e)

dg(3d)/dv= (128/32 805)vs 4(45+46vs '
+48vs '/9)K(n, 3)—, (12f)

dg(4s)/dv= (1/36) v4 '(288+414v4 '+159v4 '+24v4 s

+23v4 '/16+15v4 '/512)K(N, 4), (12g)

dg (4p)/d v = (1/960) v4 (2400+ 2800v4 +663v4

+47v4 s+33v4 4/32)K(N, 4), (12h)

where

K(s tsp) = expL —4N arc cot(x/n )5/s(1 e' ") —(12i).
The well-known f-sum rule' states that

was used, in which the error over a given range of x is
proportional to the tenth power of the interval h and
to the tenth derivative of y evaluated somewhere
within the range. The numerical integration was done
with the intervals

for 0.02&x&0.2,

for 0.2 &x&1,
k=0.25 for 1 &@&5.

h =0.01125

k=0.05

In order to obtain an estimate of the error, the inte-
gration was then repeated with twice the interval
h'= 2h. The error, taken as one part in (2"—1) of the
algebraic diGerence of the second integration minus
the first, was subtracted from the original result to give
the 6nal value of the numerical integration.

The card-programmed calculator (CPC) was set upr

to use a floating decimal arithmetic based on an eight-
digit, seven-decimal number times an appropriate
power of 10, the permissible powers being between
+49. For the numerical integration only, the last digit
was automatically rounded. In extended calculations,
there are unavoidable losses of signilcance resulting
from the addition of two similar numbers with opposite
sign. This is particularly bad if there is no rounding.
In this case when the CPC calculates (1—8/9), for
example, it adds +1.0000000 and —0.8888888 (having
scaled the smaller number to the larger exponent) to
obtain 0.1111112,which is correct to but six figures;
and virtually all of the signilcance may be lost in such
a calculation as (12 345 678—0.87654322) —12 345 677
which yields an answer of 1.0000000 (with rounding,
the answer of zero is one place better); whereas, if

a0= a8= 989; a1——a7 ——5888; a2 ——a6 ———928; a8= aq ——10496;
a4—-—4540. See, for example, W. E. Milne, Numerical Calcllls
(Princeton University Press, Princeton, 1949), p. 124.

7 H. M. Wagner, Stanford Computation Center, Stanford
University Technical Report No. 1, 1954 (unpublished); and
J. O. Carter and J. G. Herriot, Stanford Computation Center,
Stanford University Technical Report No. 2, 1954 (unpublished).

with those of (8) to provide a check on the accuracy
of the calculations.

For the integration, we used the variable X= I/Np,

v = (1+1/x')/nps.

In order to make efficient use of the calculator, the
numerical integration was performed only for 0.02&x
&5.0; power series expansion of the integrands for x
outside of this region permitted analytical integration
to a prescribed accuracy of 5 parts in 10'. The expres-
sions we actually integrated numerically were of the
form J'K(a,ns)x 'vr ' invrdx for the appropriate values
of t, with and without the logarithmic term. The
Newton-bootes quadrature formula'

yes 8

ydh= (8h/28 350)P a;y;
i=0

—(2368/467 775)huy&"& (16)
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Z g lnv =ln(kp/Ry~)
nl

Discrete
Continuum

is Total
kp/Ry

Discrete
Continuum

2s Total
kp/~

Discrete
Continuum

3s Total
kp/Ry~

Discrete
Continuum

4s Total
kp/Ry~

Discrete
Continuum

2P Total
kp/Ry~

0.56500414
0.43500066
1.00000480

0.64890758
0.35109318
1.00000076

0.70947420
0.29052585
1.00000005

0.75029035
0.24970952
0.99999987

0.80925452
0.19074843
1.00000295

0.06765781
0.93234304
1.00000085

0.02643361
0.97356933
1.00000294

0.01132089
0.98868168
1.00000257

0.00382507
0.99617705
1.00000212

—0.081384055
0.081383626—0.000000429

-0.0144949
2.9986436
2.984149 +0.000003

19.76967 &0.00006

—0.0464679
2.8582659
2.811798 &0.000009

16.6398 &0.0002

—0.0329799
2.8006791
2.767699 +0.000008

15.9214 &0.0002

—0.0198043
2.7696633
2.749859 &0.000006

15.6404 %0.0001

—0.030646255
0.000629887—0.03001637 &0.00000001
0.97042964 &0.00000001

TA'BLE I. Summation results and average excitation energies.
The sum rules Zf 1, for the oscillator strength f, Z g=b(l0, 0),
for g= (3n s'/16)v'f, are used as indicators of the accuracy of the
calculations for Z g lnv.

1/n= 137 0377.+e„[e~( &0.0016, (17)

tion were about equal in the sums for the two corre-
sponding values of l.

The three sums over both e and l, the f-sum, g-sum,
and g lnv-sum, are given in Table I. The g-sum is used
as the measure of accuracy of the calculations. The
error in the g-sum is presumed to be entirely contained
in the continuum contribution and is attributed to
the intrinsic loss of significance discussed above. The
correction to the numerical integration formula (16)
for the g-sum ranges in value from +0.00000016 for the
1s level to —0.00000008 for 3d and does not appreci-
ably affect the error. The positive probable error in
ln(ks/Ry„) is derived from the error in the g-sum in
accordance with the proportion of continuum contri-
butions.

One can now evaluate the level shift formulas (1)
and (2). For the fine structure constant, we use the
value'

Discrete
Continuum

3P Total
kp/Ry~

Discrete
Continuum

4p Total
kp/Ry~

Discrete
Continuum

3d Total
kp/Ry

0.78603312
0.21396913
1.00000225

0.79168395
0.20831693
1.00000088

0.90415898
0.09584262
1.00000160

—0.10103671
0.10103671
0.00000000

—0.10949294
0.10949345
0.00000051

—0.018593206
0.018593067—0.000000139

—0.009753547-0.028434969-0.03818852 &0.00000001
0.96253147 +0.00000001

0.006267802—0.048221808—0.0419540 +0.0000003
0.9589139 +0.0000003

0.018752995—0.023985130—0,0052321 ~0,0000002
0.9947815 &0.0000002

to obtain

ln(mc'/Ry )—=ln(2/n') = 10 53366. +2ne (1.8)

Taking a similar expression for the velocity of light

c=299 792.9+e, km/sec,
~
e,

~

&0.8 km/sec, (19)

we obtain in frequency units

the order of subtractions is reversed, the resulting
0.12345680 is correct to six figures.

Since the terms in the discrete contribution fall oG
rapidly with increasing e, we recalculated by desk
machine all of the terms for m&10 in order to reduce
the error by at least a factor of 10. This revealed that,
in some cases, the CPC results were correct only through
five digits and were in error by as much as three parts
in 10'. On this basis we considered the recalculated
discrete contribution to have a probable error of three
parts in 10'. The individual values of f obtained in the
course of our calculations, as well as those for levels 4d
and 4f, were tabulated for each value of /. s The sums
of f, which we calculated for each value of / and com-

pared with (36), and the sums of g for each I, value,
which we calculated for es ——2 and compared with (47),
were useful in promoting the assumption that the re-
maining discrepancy in the f-sum or g-sum for any level

solp was a fairly systematic error in the continuum con-
tribution, for the ratios of error to continuum contribu-

Copies of a supplementary table of f-values for n0&4 and all
values of /0 and / which we obtained to nine decimals for e(10
and to Ave significant figures for n&10 has been deposited as
Document number 4705 with the American Documentation
Institute Auxiliary Publications Project, Photoduplication Ser-
vice, Library of Congress, Washington 25, D. C. A copy may be
secured by citing the Document number and by remitting $1.25
for photoprints, or $1.25 for 35-mm micro61m. Advance
payment is required. Make checks or money orders payable to:
Chief, Photoduplication Service, Library of Congress.

(n /3x)Ry c= 135.638924—3e +0.00045 e,
&0.000015 Mc/sec, (20)

the last uncertainty coming from that of the Rydberg
constant.

The electromagnetic level shifts for a fixed Coulomb
potential are given in Table II. The probable errors
shown for the S-level shifts are taken from the uncer-
tainty in our calculations for the average excitation
potentials. Any change in the velocity of light in km/sec
is given by e„and any change in 1/n is given directly
bye.

In order to obtain a 6nal theoretical value for the
level shift SH(ns) =AX(Ns 'Sl—Ns 'P;), which is meas-
ured experimentally, we must correct for our use of a
fixed Coulomb 6eld and other approximations. Some
of these corrections have been calculated and are sum-
marized in a paper by Salpeter" for the case no=2.
The corrections to the eo ——2 level shift in hydrogen
whose values have been calculated include (6.20+0.10)
Mc/sec for all fourth-order corrections, (—1.175&0.08)
Mc/sec for the effect of the nuclear mass, (0.025
&0.005) Mc/sec for the effect of the electron-nucleon
interaction, and an uncertainty (&0.08) Mc/sec from
the error in the reduced mass correction factor for the
contribution from the electron's anomalous magnetic
moment. Although the no dependence of some of these
corrections is 1/mes, for others it has not been calcu-

9 J. W. M. DuMond and E. R. Cohen, Revs. Modern Phys.
25, 691 (1953)."E. E. Salpeter, Phys. Rev. 89, 92 (1953).
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TABLE II. Level shifts for 6xed Coulomb 6eld.
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State

1S
2S
3S
4S
State

2pg
2P)
3P)
3pk
4pi
4P)
3D)
3D)

Parentheses in Eq. (1)

7.489696+2m&~ &0.000003
7.662047+2am ~0.000009
7.706146+2o,a~&0.000008
7.723986+2o.a~&0.000006

Parentheses in Eq. (2)

—0.09498363&0.00000001
0.09251637~0.00000001—0.0868115~0.0000001
0.1006885~0.0000001—0.0830460~0.0000003
0.1044540~0.0000003—0.0322679~0.0000002
0.0302321&0.0000002

Level sh1ft In Mc/sec

8127.154—164&~+0.027m, ~0.004
1039.2718—21&~+0.0035&,~0,0014
309.7047—7.6m~+0.0011m,~0.0004
130.9591—2.6e~+0.00045m, ~0.0002

Level shift in Mc/sec

—12.883477+0.3e~—0.000043m, ~0.000002
12.548821—0.3acr+0.000042c,~0.000002—3.488894+0.08m~ —0.000013ce&0.000005
4.046601—0.096~+0.0000146e&0.000005—1.408034+0.03'~—0.000005m, &0.000006
1.771004—0.04' +0.000005',&0.000006—1.29682+0.036'~ 0.00000456o~0.00001
1.21501—0.03m~+0.0000043m, ~0.00001

lated. "As the latter corrections are small, we assume
a 1/ups law for these as well.

The calculated values for the level shifts SH(eo) are
given in Table III. For the 2s level, our value for
In(kp/Ry„) of 2.8118 is in good agreement with the
Bethe, Brown, and Stehn value of 2.8121 and represents
an increase in the level shift of 0.04 Mc/sec. The
theoretical value for SH (2) is still about one-half Mc/sec
below the experimental value of (1057.77&0.10) Mc/
sec."It may be seen from Table II that if the average
excitation energies were independent of eo, as assumed
heretofore, the 3s and 4s level shifts based on the 2s
shift would be 307.932 Mc/sec and 129.909 Mc/sec for
a fixed Coulomb field. These are 1.77 Mc/sec and 1.05
Mc/sec below our results, and making allowance for
negative shifts of 3I'; and 4Pi, the estimates for SH(3)
and SH(4) would be too small by 1.44 Mc/sec and
0.85 Mc/sec.

The author wishes to thank Professor Willis E.
Lamb, Jr., for suggesting this problem and for his
interest and advice during its execution. The author
would also like to acknowledge the assistance of the
staG of the Stanford Computation Center and particu-
larly the advice of Professor John G. Herriot on pro-
gramming for the Stanford I. B.M. Card-Programmed
Calculator.

TABLE III. Final results for the (r1p Si—ppp Pl) level shifts.

p„p=— 1/*(m/m) p1I (rl p/pmp) dr, (21)

1 (ps,ep) = (E„—Ep)/Ry„, — (22)

and making use of the angular momentum operator,

L„„'=/(/+1)A',

we introduce projection operators,

0+= [A L' —/p(/o —1)]/(4/o+2),
II-=—[(/o+1) (/o+2) —A 'I-']/(4/o+2),

with the properties

(23)

(24a)

(24b)

1 if / = /p+ 1
0„„+=

l0 if /=/p —1,

|0 if /=/p+10„„=
I 1 if /=/p —1,

(25a)

Goo+ ——/p/(2/p+ 1), Qpp = (/p+ 1)/(2/p+ 1). (25b)

From the commutation relation

APPENDIX. GENERALIZED SUM RULES

In order to use as many sum rules as possible to check
our calculations, we derive the rule for P„g(eo/p, n/p~1)
by means of projection operators. As an illustration of
the method, we calculate the rule for p„ f(r1o/o, I/o~1)
which has been found by other means. "

%ith the notation

Eqs. (1) and (2)
Corrections

SB(2) 111 Mc/sec

1052.155—22&~+0.0035&,&0.002
5.05&0.15

1057.21~0.16
it can be shown that

[r;,p;]= iAb;;, (26)

Eqs. (1) and (2)
Corrections

313.1936—7.7m~+0.0011m,~0.0004
1.496~0.045 and

L'= (rXp)'=r'p' —(r.p)(r. p)+iA(r p), (27)

SB(3) in Mc/sec 314.690~0.047 r. [L' p]=2iAL'+2A'(r. p). (28)

Eqs. (1) and (2)
Corrections

132.3672—2.76a+0.00045ec~0.0002 It follows that
0.631~0.019

SB(4) in Mc/sec 132.998&0.020 (r II'p) oo= (r p) oo[1) o'~1/(2/o+I)]
&iA 'Loo'/(2/o+1). (29)

» E E. Salpeter .(private communication).
'P Triebwasser, Dayhoif, and Lamb, Phys. Rev. 89, 98 (1953).

"E.Wigner, Physik. Z. 32, 450 (1931); and J. G. Kirkwood,
Physik. Z. 33, 521 (1932).
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p= —V V= —(1/r) (d V/dr) r,
we can write

Since, for an operator F not explicitly time dependent, Since for a spherically symmetric potential energy

P'„o (———i/A) LF,Bl„o——i(Ry„/h) ~(n, no) R„p, (30)
V(~)

(40)

p„p= ip (Ry„/A) v(n, np) r„p,

pp = —p(Ry„/A)'u'(n, no)rp„

Combining Eqs. (22), (26), and (31a) gives

(31a)

(31b)

t'dV 8 q

(p p),.=ih~ —
)

=--,ih(~ V)...( dr Br& pp

we Gnd from Eq. (29):the expression

(41)

(r p)pp= Q rp 'p„o———(p r)pp=3i h/2 (p'Q+P)op= p—ih(~ V)pp Qpp+&
1

(2lp+1)
The oscillator strength

f(nolo, ni) = (2p/3A) (Ry /A)P &(n,no) (ro ( (33)

can be written

f(nolo, ni) =Q ( 2i/—3A)rp p p,

and by making use of (25a), we can form the sum

( 2i)2 f(»lo nip+1)= Z I

—~rp-. Q-'p. p

n 3hj

2i
= ——(r Q+p)oo, (35)

35

which may be evaluated from Eqs. (23), (25b), (29),
and (32), to give

f(nplp nip&1)
= +(2lp+1+1) (2lg+1+2)/L6(2lo+1) j. (36)

Similarly, from Eqs. (31) and (33), we can write

v'(n, np) f(nplp, nl) = (2i/3@A) (A/R„)' P pp„. p„p, (37)

and form the g-sum using Eq. (7),

t'1 dV) h 'Loo'
+ih~ — (, (42)

&r dr J pp 2lp+1

which, when substituted into Eq. (39), gives

a'no' lo+~g~~g
P g(nplp, nip+1) = (V'V) oo

n 2eo 2(2lp+1)

lp(lp+1) (1 dVq
(43)

2lp+1 4r dr) pp

For a Coulomb held, V= —Ze'/r, it has been shown
that'

dV Bfp
(V'V)oo ———2) Po* dr

dr Br

4e'Z4/a'no', for lp=0
(44)

for lo4o,0,
and that'4

(Ze'/r ) pp ——2e'Z /Paono'lo(lo+1) (2lo+1)g (45)

Hence, from (43) the desired sum rule becomes for lp =0:

g„g(nolo, nloa1) = (ino'/Sph)(A/Ry„)'(p Q~p)pp. (38)

Using (R„/A)'= e'/16m'nia', we obtain

g„g(nolo, nip&1) = (iaonp'/2he') (p Q+p)po. (39)

P„g(np0, n1) =Z',

g„g(nolo, nip&1) =&Z /(2lp+1) .
'4 See reference 3, p. 286.

(46)


