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Abstract

This paper discusses the construction of rotation models of linear-phase generalized LOT (Gen-

LOT) which can express all the orthonormal bases. The bases of GenLOT can be generated by

extending the dimensions to both sides of the bases in multi-dimensional orthogonal space, and

adding operations of rotation and permutation, etc., which satisfy the 3 conditions: symmetry,

orthogonality and norm 1 for every stage. In order to describe all the combinations of these op-

erations succinctly, the finite symmetric permutation group and the sign inversion group for the

columns of the basic symmetric matrix are defined．Then, a normal subgroup H extensible to an

infinite rotation group is extracted from the direct product G of these groups. Next, all elements

of G are classified into 4 residue classes using modulus H, and rotation models are generated by re-

ducing the redundant operations between these stages. As variations of these models are expanded

4 times at every stage, the optimal parameters search must be done efficiently. On the other hand,

coding gain, used widely as a measure of coding efficiency, is unaffected by the operations of permu-

tation, sign inversion and reflection of LOT bases. Using these properties, we examined equivalent

transformation rules between the stages where the optimal value of coding gain is conserved in

4-dimensional and 6-dimensional rotation models. Also, it is shown that rotation models can be

classified into several groups equal to the number of stages using the 4 extracted rules mentioned

above.
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1 Introduction

Block coding using orthogonal transforms such as

DCT(Discrete Cosine Transform) and sub-band coding us-

ing filter banks are used for transform coding of images. To

improve the block distortion that occurs when the compres-

sion ratio of DCT is increased, Malver et al. proposed LOTs

that satisfy the conditions of orthogonality, linear phase,

and perfect reconstruction[2]. The method consists of de-

composing the DCT basis into even- and odd-order bases

and extending the basis length by twice the block size. Fur-

thermore, they proposed methods to reduce the real num-

ber of multiplications by exploiting the symmetry of the ex-

tended basis[3]. This technique is achieved by substituting

the transformations of adjacent blocks with delay elements

in the blocks and by introducing butterfly operations of ad-

dition and subtraction.

On the other hand, Vetterli et al. showed that LOT

and filter banks are equivalent transformations using the

so-called polyphase matrix. Furthermore, they proposed

methods for designing filters with perfect reconstruction

and orthogonality using regularity and paraunitarity of the

polyphase matrix, which allows for constant delays[4][5].

In general, the block size was set to an even number in the

LOT design to take advantage of the symmetry of the trans-

formations. In filter bank design, this number corresponds
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to the number of channels or divisions.

Soman et al. generalized the condition and proposed

methods (GenLOT) to construct filter banks with an ar-

bitrary number of channels with orthogonality and linear

phase[6].

Further extending this approach, Queiroz et al. reported

methods for constructing LOTs with a basis that is an inte-

ger multiple of the block size[7][8].

On the other hand, Izawa focused on the property that

rotation operations in LOTs constitute symmetric rotation

groups, and proposed efficient methods for designing multi-

dimensional linear phase LOTs using the group property[11].

Furthermore, he also introduced geometric models based on

the rotation of the orthogonal transform and reported mini-

mal sets of parameters by which the states of all the bases of

the LOT can be represented[12]. By extending this rotation

model, he designed generalized LOTs of linear phases whose

basis length is expanded to an integer multiple of the block

size[13].

As described above, a number of various designs of LOT

and optimization methods have already been reported.

However, the question of how many optimal solutions ex-

ist when the coding gain and the evaluation scale are ap-

plied has not been clarified. For example, the Lattice model,

which is widely used in the design of generalized LOTs, Each

stage consists of a butterfly-like addition/subtraction, a de-

lay element, and 2 orthogonal transformation sections.

The optimization process determines the minimum num-

ber of rotation parameters and the parameter values that

maximize the coding gain values. In the above optimiza-

tion, when the orthogonal transform is represented only by

a rotation operation, That is, when the value of its determi-

nant is 1, it was considered in detail.

On the other hand, combining a rotation with odd permu-

tations reduces the determinant to -1, however, no rigorous

study has been made. Basically, when the determinant of

the orthogonal transform section is 1 and -1, the optimal

solutions for the basis shape and coding gain take different

values.

As the number of stages increases, the number of combina-

tions increases by a power law, more efficient optimization

methods are required. However, it is not easy to simplify

the redundant operations between stages in the conventional

lattice model because it includes a delay element z−1.

The purpose of this study is to introduce rotational mod-

els with simple geometric structures and to organize and

integrate the corresponding equivalent operations between

stages.

In general, the transform matrix of the discrete Fourier

transform (DFT) has regularity and symmetry. Using this

property, the so-called Fast Fourier Transform (FFT) is de-

rived by reducing the real number of multiplications by in-

troducing butterfly operations of addition and subtraction

based on distribution laws such as A ·B±A ·C = A(B±C).

In the above rotation model, there is symmetry in the ro-

tation operations of each stage. For the most basic model,

integrating the multiplicative part of the rotation using but-

terfly operations of addition and subtraction, etc., leads to

generalized LOTs with conventional lattice structures[13].

First, we sought concise descriptions of rotational models

that could represent all states of 4-8 dimensional basis of

generalized LOTs. In the next step, finite symmetric per-

mutation groups and symmetric sign inversion groups were

derived from the extended symmetry formula.

All operations satisfying the above symmetry equation are

represented by the direct product G of their combinations.

From this, we extract a normal subgroup H which can be

extended to a continuous rotation group, and showed that

it can be classified into 4 residue classes (cosets) using H as

modulus.

The rotation model is constructed by repeating the op-

erations corresponding to the 4 classes at each stage. As

the number of stages increases, the number of combinations

increases by a power of 4.

In general, operations such as LOT basis substitution, sign

reversal of ±, and mirroring do not change the value of the

coding gain, which is widely used as a measure of coding

efficiency. Using this property, we derived an equivalent

transformation rule between stages whose optimal values are

preserved in 4- to 8-dimensional rotation models in order to

integrate the redundant operations left between stages[11].

Furthermore, by organizing and integrating the above ro-

tation model using the 4 rules extracted, it is clarified that

the final classification is into groups equal to the number of

stages[14].
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2 Construction of symmetric 4-dimensional

orthonormal basis

First, let us review the construction of a symmetric 4-

dimensional orthonormal basis[11].

2.1 Basic symmetric matrix of orthonormal basisE4

All 4-dimensional orthonormal bases that are linear phases

can be represented using the (4×4) matrix T4 shown below.

T4 =


a1 a2 a2 a1

b1 b2 b2 b1

c1 c2 −c2 −c1

d1 d2 −d2 −d1

 (1)

Each row of the matrix T4 corresponds to a basis, and

with respect to the vertical symmetry axis between columns

2 and 3.

Rows 1 and 2 are even-symmetric components, rows 3 and

4 are odd-symmetric components.

An normalized orthogonal transform is formed when the

following conditions are satisfied,

a2
1 + a2

2 =
1
2

(2)

b2
1 + b2

2 =
1
2

(3)

c2
1 + c2

2 =
1
2

(4)

d2
1 + d2

2 =
1
2

(5)

a1 · b1 + a2 · b2 = 0 (6)

c1 · d1 + c2 · d2 = 0 (7)

where equations (2)～(5) represent the norm of the basis

and equations (6),(7) represent the orthogonality conditions

between the bases.

Note that by using the Lattice model expression [6], I2

is the unit matrix of (2 × 2), and J2 is the opposite-angle

matrix (2× 2) with 1 element. Let J2 be the antisymmetric

matrix (2×2) with element 1, and Equation (1) is expressed

as follows

S0 =
(

a1 a2

b1 b2

)
(8)

S1 =
(

c1 c2

d1 d2

)
(9)

T4 =
1√
2

(
S0 0
0 S1

)(
I2 J2

I2 −J2

)
(10)

In the same way, we can use

D =
(

I2 0
0 −I2

)
(11)

then equations (2)～(7) are equivalent to the following equa-

tions.
T t

4 · D · T4 = J4 (12)

On the other hand, by applying a rotation operation to the

4-dimensional unit matrix I4, we can generate a basic sym-

metric matrix E4 with a vertical axis of symmetry between

columns 2 and 3 and a diagonal matrix of (2 × 2) symmet-

rically arranged, where the 1st and 2nd rows correspond to

even-symmetric components and the 3rd and 4th rows to

odd-symmetric components.

E4 =


1√
2

0 0 1√
2

0 1√
2

1√
2

0
1√
2

0 0 − 1√
2

0 1√
2

− 1√
2

0

 (13)

By applying certain deformation operations to the basic

symmetric matrix E4, we can generate a symmetric all 4-

dimensional orthonormal basis T4.

2.2 Column manipulation to preserve symmetry of E4

In order for T4 to represent all orthonormal bases, we

need to add a continuity deformation operation like rota-

tion. Since each term of T4 is a continuous real number, we

first consider its finite group and then extend it to an infinite

group. Therefore, we reveal the operation on the columns of

the basic symmetric matrix E4 that preserves its symmetry,

orthogonality, and norm 1[14].

In general, swapping columns corresponds to a substitu-

tion operation on the coordinate axes of a 4-dimensional

orthogonal space, and which constitutes a finite symmetry

group (permutation group) S(4) of order 4[15][16]. The to-

tal number of substitutions, i.e. order, of S(4) is 4! = 24.

However, this does not necessarily mean that the conditions

in equations (2)～(7) are satisfied. Substitution of columns

with symmetry axes between columns 2 and 3 requires that

the column numbers x1 to x4 satisfy the condition that the

4th-order symmetry equation f4 is invariant[11].

f4 = x1 · x4 + x2 · x3 (14)

For example, simultaneous substitutions of column 1 (x1)

and column 2 (x2), column 3 (x3) and column 4 (x4) will

not affect the values of the symmetric formula.
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It is clear that equations (2)～(7) are satisfied in this case.

As shown in Table 1, the number of substitutions satisfying

the symmetry formula f4 is 2! 22 = 8, and constitutes a

symmetry group.

In this paper, we call this the symmetric permutation

group Gσ, where σ0 to σ3 are even permutation, σ4 to σ7 are

odd permutation, σ0 is identity permutation, and σ4 and σ5

are transposition.

There is also a relationship σ−1
n = σn (n =

0, 1, · · · , 5),σ−1
6 = σ7,σ−1

7 = σ6. The permutation σn

Table. 1 The symmetric permutation group Gσ formed

by columns of matrix E4

column x1 x2 x3 x4 expression using
permutation transpositions(example)

σ0 1 2 3 4 identity permutation
even σ1 2 1 4 3 (1,2)(3,4)

permutation σ2 3 4 1 2 (1,3)(2,4)
σ3 4 3 2 1 (1,4)(2,3)

σ4 1 3 2 4 transposition(2,3)
odd σ5 4 2 3 1 transposition(1,4)

permutation σ6 2 4 1 3 (1,3)(2,4)(1,4)
σ7 3 1 4 2 (1,2)(3,4)(1,4)

can also be expressed using a (4 × 4) matrix Tσn ,(n =

0, 1, · · · , 7). In this case, T−1
σn

= T t
σn

is an orthogonal ma-

trix (real unitary matrix). Using this matrix Tσn , column

substitution can be expressed as E4 · Tσn .

Since Tσn is multiplied from the right of the basic sym-

metric matrix E4, these operations are called right basic

deformations. Table 2 shows a group table summarizing

the combinations (products) of these permutations. This

shows that the product of permutations (σmσn) is as non-

commutative as the product of matrices (TσmTσn).

Table. 2 Multiplication table of the symmetric permu-

tation group Gσ

right \ left even permutation odd permutation
σ0 σ1 σ2 σ3 σ4 σ5 σ6 σ7

σ0( 1, 2, 3, 4) σ0 σ1 σ2 σ3 σ4 σ5 σ6 σ7
even σ1( 2, 1, 4, 3) σ1 σ0 σ3 σ2 σ6 σ7 σ4 σ5

permutation σ2( 3, 4, 1, 2) σ2 σ3 σ0 σ1 σ7 σ6 σ5 σ4
σ3( 4, 3, 2, 1) σ3 σ2 σ1 σ0 σ5 σ4 σ7 σ6
σ4( 1, 3, 2, 4) σ4 σ7 σ6 σ5 σ0 σ3 σ2 σ1

odd σ5( 4, 2, 3, 1) σ5 σ6 σ7 σ4 σ3 σ0 σ1 σ2
permutation σ6( 2, 4, 1, 3) σ6 σ5 σ4 σ7 σ1 σ2 σ3 σ0

σ7( 3, 1, 4, 2) σ7 σ4 σ5 σ6 σ2 σ1 σ0 σ3

2.3 sign inversion operation to preserve the symmetry of E4

In the previous section, we considered the permutation

of columns that make the 4th-order symmetric formula f4

invariant, but this condition is not only satisfied by substi-

tution. For example, reversing the signs (±) of x2 in column

2 and x3 in column 3 simultaneously does not change the

form of the equation.

Here, we define the operations ρ1, ρ2 and ρ3 that invert

the symmetric column sign (±) with respect to the operation

ρ0(+,+,+,+) corresponding to the unit element as shown

in Table 3. In this case, multiplication operation can be

defined between ρ0～ρ3, for example, the following relation

is formed.
ρ1 · ρ2 = ρ2 · ρ1 = ρ3 (15)

As with the permutation in the previous section, it consti-

tutes a symmetry group, which we will call the sign inver-

sion group Gρ. As with permutation, the element of the

Table. 3 Multiplication table of the sign inversion group

Gρ formed by columns of matrix E4

right \ left ρ0 ρ1 ρ2 ρ3
ρ0 (+, +, +, +) ρ0 ρ1 ρ2 ρ3
ρ1 (+, −, −, +) ρ1 ρ0 ρ3 ρ2
ρ2 (−, +, +, −) ρ2 ρ3 ρ0 ρ1
ρ3 (−, −, −, −) ρ3 ρ2 ρ1 ρ0

sign inversion group Gρ can also be represented using an

orthogonal matrix of (4 × 4). For example, ρ1 is equal to

the diagonal terms in columns 2 and 3 of the (4 × 4) unit

matrix I4 set to -1.

2.4 Symmetric permutation-sign inversion group G

The symmetric column substitution σ0～σ7 constitutes

the symmetric permutation group Gσ of order 8, and the

symmetric sign-inverted operation ρ0～ρ3 constitutes the

sign inversion group Gρ of order 4. They can all be repre-

sented by (4×4) orthogonal matrices with symmetric compo-

nents, and We can define multiplication operation between

them. As shown below, the multiplication of σ and ρ is

noncommutative.
σ1 · ρ1 = ρ2 · σ1 (16)

σ1 · ρ2 = ρ1 · σ1 (17)

σ2 · ρ1 = ρ2 · σ2 (18)

σ2 · ρ2 = ρ1 · σ2 (19)

σ6 · ρ1 = ρ2 · σ6 (20)

σ6 · ρ2 = ρ1 · σ6 (21)

σ7 · ρ1 = ρ2 · σ7 (22)

σ7 · ρ2 = ρ1 · σ7 (23)

These combinations are called direct products [Gσ×Gρ] and

constitute a symmetry group of order 32 as shown in Table

4. In this paper, we call this the symmetric permutation

and sign inversion group G.
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Table. 4 Direct products of the symmetric permutation group Gσ and the sign inversion group Gρ

sign inversion groupGρ
symmetric permutation groupGσ ρ0 ρ1 ρ2 ρ3

(+, +, +, +) (+, −, −, +) (−, +, +, −) (−, −, −, −)
σ0( 1, 2, 3, 4) 1, 2, 3, 4 1, −2, −3, 4 −1, 2, 3, −4 −1, −2, −3, −4

even σ1( 2, 1, 4, 3) 2, 1, 4, 3 2, −1, −4, 3 −2, 1, 4, −3 −2, −1, −4, −3
permutation σ2( 3, 4, 1, 2) 3, 4, 1, 2 3, −4, −1, 2 −3, 4, 1, −2 −3, −4, −1, −2

σ3( 4, 3, 2, 1) 4, 3, 2, 1 4, −3, −2, 1 −4, 3, 2, −1 −4, −3, −2, −1
σ4( 1, 3, 2, 4) 1, 3, 2, 4 1, −3, −2, 4 −1, 3, 2, −4 −1, −3, −2, −4

odd σ5( 4, 2, 3, 1) 4, 2, 3, 1 4, −2, −3, 1 −4, 2, 3, −1 −4, −2, −3, −1
permutation σ6( 2, 4, 1, 3) 2, 4, 1, 3 2, −4, −1, 3 −2, 4, 1, −3 −2, −4, −1, −3

σ7( 3, 1, 4, 2) 3, 1, 4, 2 3, −1, −4, 2 −3, 1, 4, −2 −3, −1, −4, −2

2.5 Normal subgroup H of symmetric permutation and sign

inversion groupG

In order to clarify the structure of the symmetric permu-

tation and sign inversion group G, we clarify its subgroups

and their properties. There are multiple non-trivial true

subgroups of G. The largest of these is the normal sub-

group H16 with order 16 and index 2. Its elements are even-

permutation σ0 to σ3 terms and are noncommutative.

Furthermore, there are 2 normal subgroups of order 8 and

index 4 in G. The H8 in it is commutative as shown in Table

5 and can be extended to a continuous rotation group.

Table. 5 Multiplication table of the normal subgroup H8 in G

right \ left σ0ρ0 σ0ρ3 σ1ρ1 σ1ρ2 σ2ρ1 σ2ρ2 σ3ρ0 σ3ρ3
σ0ρ0 σ0ρ0 σ0ρ3 σ1ρ1 σ1ρ2 σ2ρ1 σ2ρ2 σ3ρ0 σ3ρ3
σ0ρ3 σ0ρ3 σ0ρ0 σ1ρ2 σ1ρ1 σ2ρ2 σ2ρ1 σ3ρ3 σ3ρ0
σ1ρ1 σ1ρ1 σ1ρ2 σ0ρ3 σ0ρ0 σ3ρ3 σ3ρ0 σ2ρ1 σ2ρ2
σ1ρ2 σ1ρ2 σ1ρ1 σ0ρ0 σ0ρ3 σ3ρ0 σ3ρ3 σ2ρ2 σ2ρ1
σ2ρ1 σ2ρ1 σ2ρ2 σ3ρ3 σ3ρ0 σ0ρ3 σ0ρ0 σ1ρ1 σ1ρ2
σ2ρ2 σ2ρ2 σ2ρ1 σ3ρ0 σ3ρ3 σ0ρ0 σ0ρ3 σ1ρ2 σ1ρ1
σ3ρ0 σ3ρ0 σ3ρ3 σ2ρ1 σ2ρ2 σ1ρ1 σ1ρ2 σ0ρ0 σ0ρ3
σ3ρ3 σ3ρ3 σ3ρ0 σ2ρ2 σ2ρ1 σ1ρ2 σ1ρ1 σ0ρ3 σ0ρ0

2.6 Classification by residue class C0-C3 with normal sub-

group H8 as modulus

From the properties of the symmetry group, we can use

H8 to classify the elements of G into 4 residue classes C0 to

C3 that have no elements in common with each other. The

following residue classes C0 to C3 exist, all of which have

order 8 as shown in Table 6,

G = C0 ∪ C1 ∪ C2 ∪ C3 (24)

Cj ∩ Ck = ø (j ̸= k) (25)

where C0 to C3 correspond to the residue classes (left and

right residue classes) with the normal subgroup H8 formed

by G, and are expressed as follows.

C0 = (σ0 · ρ0) · H8 = H8 · (σ0 · ρ0) = H8 (26)

C1 = g1 · H8 = H8 · g1 (g1 ∈ C1) (27)

C2 = g2 · H8 = H8 · g2 (g2 ∈ C2) (28)

C3 = g3 · H8 = H8 · g3 (g3 ∈ C3) (29)

Table. 6 Classification of G elements by the residue

classes C0, C1, C2, C3

σ0 σ1 σ2 σ3 σ4 σ5 σ6 σ7
ρ0 Residue σ0ρ0 σ1ρ0 σ2ρ0 σ3ρ0 σ4ρ0 σ5ρ0 σ6ρ0 σ7ρ0

class C0 C1 C1 C0 C2 C2 C3 C3
ρ1 Residue σ0ρ1 σ1ρ1 σ2ρ1 σ3ρ1 σ4ρ1 σ5ρ1 σ6ρ1 σ7ρ1

class C1 C0 C0 C1 C3 C3 C2 C2
ρ2 Residue σ0ρ2 σ1ρ2 σ2ρ2 σ3ρ2 σ4ρ2 σ5ρ2 σ6ρ2 σ7ρ2

class C1 C0 C0 C1 C3 C3 C2 C2
ρ3 Residue σ0ρ3 σ1ρ3 σ2ρ3 σ3ρ3 σ4ρ3 σ5ρ3 σ6ρ3 σ7ρ3

class C0 C1 C1 C0 C2 C2 C3 C3

Next, we extend this finite normal subgroup H8 to a sym-

metric subgroup of the 4th-order special orthogonal group

SO(4), which is located in the topological group in the con-

tinuous group. Every element of H8 of a normal subgroup

can be represented by a pair of symmetric rotation oper-

ations on columns R1(θ) and R2(φ), respectively. In this

paper, we call this a symmetric rotation pair.

R1(θ) =


cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 cos θ sin θ
0 0 − sin θ cos θ

 (30)

R2(φ) =


cos φ 0 − sinφ 0

0 cos φ 0 sin φ
sinφ 0 cosφ 0

0 − sinφ 0 cos φ

 (31)

The continuous real variable θ，φ corresponds to the angle of

rotation, and the product of these rotations R1(θ) ·R2(φ) is

commutative. By using this symmetric rotation pair R1(θ)，

R2(φ), we define 4 models that extend the residue class C0

～C3. In each of these models, by giving the rotation angles

of 0，±π
2，π shown in Tables 7 and 8 we can represent all

the elements of G.

2.7 Basic rotation model using symmetric rotation pairs

By considering θ，φ rotation parameters of symmetric ro-

tation pairs R1 and R2 as continuous quantities, we define

4 basic rotation models I～IV corresponding to the residue

class C0～C3.

2.7.1 Basic rotation model I (H8 = C0)

The reference rotation model, represented by

E4 R1(θ) R2(φ) with continuous rotation parameters.
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Table. 7 An expression of the symmetric permutation and sign inversion group G using a pair of symmetric rotations

(left residue classes)

rotation angle C0 = H8 left residue class C1 left residue class C2 left residue class C3
θ φ R1(θ)R2(φ) ρ1R1(θ)R2(φ) σ4R1(θ)R2(φ) σ4ρ1R1(θ)R2(φ)

0 σ0ρ0 σ0ρ1 σ4ρ0 σ4ρ1
0 π

2 σ2ρ1 σ2ρ3 σ7ρ1 σ7ρ3
- π
2 σ2ρ2 σ2ρ0 σ7ρ2 σ7ρ0
π σ0ρ3 σ0ρ2 σ4ρ3 σ4ρ2
0 σ1ρ1 σ1ρ3 σ6ρ1 σ6ρ3

π
2

π
2 σ3ρ3 σ3ρ2 σ5ρ3 σ5ρ2

- π
2 σ3ρ0 σ3ρ1 σ5ρ0 σ5ρ1
π σ1ρ2 σ1ρ0 σ6ρ2 σ6ρ0
0 σ1ρ2 σ1ρ0 σ6ρ2 σ6ρ0

- π
2

π
2 σ3ρ0 σ3ρ1 σ5ρ0 σ5ρ1

- π
2 σ3ρ3 σ3ρ2 σ5ρ3 σ5ρ2
π σ1ρ1 σ1ρ3 σ6ρ1 σ6ρ3
0 σ0ρ3 σ0ρ2 σ4ρ3 σ4ρ2

π π
2 σ2ρ2 σ2ρ0 σ7ρ2 σ7ρ0

- π
2 σ2ρ1 σ2ρ3 σ7ρ1 σ7ρ3
π σ0ρ0 σ0ρ1 σ4ρ0 σ4ρ1

Table. 8 An expression of the symmetric permutation and sign inversion group G using a pair of symmetric rotations

(right residue classes)

rotation angle C0 = H8 right residue class C1 right residue class C2 right residue class C3
θ φ R1(θ)R2(φ) R1(θ)R2(φ)ρ1 R1(θ)R2(φ)σ4 R1(θ)R2(φ)σ4ρ1

0 σ0ρ0 σ0ρ1 σ4ρ0 σ4ρ1
0 π

2 σ2ρ1 σ2ρ0 σ6ρ1 σ6ρ0
- π
2 σ2ρ2 σ2ρ3 σ6ρ2 σ6ρ3
π σ0ρ3 σ0ρ2 σ4ρ3 σ4ρ2
0 σ1ρ1 σ1ρ0 σ7ρ1 σ7ρ0

π
2

π
2 σ3ρ3 σ3ρ2 σ5ρ3 σ5ρ2

- π
2 σ3ρ0 σ3ρ1 σ5ρ0 σ5ρ1
π σ1ρ2 σ1ρ3 σ7ρ2 σ7ρ3
0 σ1ρ2 σ1ρ3 σ7ρ2 σ7ρ3

- π
2

π
2 σ3ρ0 σ3ρ1 σ5ρ0 σ5ρ1

- π
2 σ3ρ3 σ3ρ2 σ5ρ3 σ5ρ2
π σ1ρ1 σ1ρ0 σ7ρ1 σ7ρ0
0 σ0ρ3 σ0ρ2 σ4ρ3 σ4ρ2

π π
2 σ2ρ2 σ2ρ3 σ6ρ2 σ6ρ3

- π
2 σ2ρ1 σ2ρ0 σ6ρ1 σ6ρ0
π σ0ρ0 σ0ρ1 σ4ρ0 σ4ρ1

2.7.2 Basic rotation model II (C1)

There are many variations of the basic rotation model

corresponding to the residue class C1. For example, using

the left residue class of ρ1 ∈ C1, the basic rotation model is

represented by E4 ρ1 R1(θ) R2(φ).

2.7.3 Basic rotation model III (C2)

The basic rotation model corresponding to the residue

class C2 is represented by E4 σ4 R1(θ) R2(φ), using the

left residue class of σ4 ∈ C2.

2.7.4 Basic rotation model IV (C3)

The basic rotation model corresponding to the residue

class C3 is represented by E4 σ4 ρ1 R1(θ) R2(φ), using the

left residue class of σ4 ρ1 ∈ C3. Note that we can also

express the basic rotation model II to IV by using the right

residue class in Table 8, where the basic rotation model (I)

and (II) are symmetric subgroups of the special orthogonal

group SO(4), and the basic rotation model (I)～(IV) cor-

respond to symmetric subgroups of the orthogonal group

O(4)[15].

2.8 Equivalent transformation of basic rotation models

The components of the basic rotation model, R1(θ),

R2(φ), ρ1, ρ2, and σ4 belong to the right basic deformation

for E4. For these operations, the equivalent transformation

rules shown in Figure 1 are satisfied. By applying this rule

one after the other, it is possible to represent all I～IV in the

basic rotation model using only the left basic deformation

of E4.

3 Rotation models of 4-dimensional generalized

LOT

This chapter describes methods for constructing 4 dimen-

sion generalized LOT rotation models.

3.1 Construction method of 4-dimensional LOT(4 × 8)

In the previous section, we performed 4 operations on the

4 columns of the basic symmetric matrix E4, corresponding

to right basic deformations. It was shown that this can

generate all orthonormal bases satisfying the 3 conditions

of symmetry, orthogonality, and norm 1. The length of the

orthogonal basis is extended to 8 columns of 2 blocks by

applying the same operation to the above basis with a shift

of half a block, i.e., 2 columns, and all the bases of LOT(4×
8) satisfying the above 3 conditions are generated. For each

of the 4 types of operations (I～IV) in the 1st stage shown

in the previous section, the rotation operations in the 2nd

6
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Fig. 1 Equivalent transformation rules on the basic symmetric matrix E4

stage (I～IV) are added, so the rotation model is expanded

to 16 types of (I−I)～(IV−IV).

Figure 2(a) shows an example of model (I−I) and Figure

2(b) shows an example of model (III−III). In this example,

the right residue class representation is used, however it can

also be expressed in terms of the left residue class.

E E 

R

R

R

R

R

R

R

R

L

L

L

L

Fig. 2 Rotation models of LOT(4 × 8)(I−I) and (III−III)

3.2 Equivalent transformation rules between stages

By using the property that the product of R1 and R2 of the

rotation operation is commutative, for example, R1−2(θ2) of

the 2nd stage in Figure 2(a) can be moved to the 1st stage

and absorbed into R1−1(θ1). In this case, since the direction

of their rotation is reversed, we can omit the parameter θ2

by defining the angle used in R1−1(θ1 − θ2) as a new angle

θ1. In the case of Figure 2(b) on the other hand, the position

of R1 and R2 can be moved over σ4, which corresponds to

the cross section of each stage.

For example, R1−2(θ2) in the 2nd stage becomes an equiv-

alent operation to R2 when it exchanges positions with σ4

and is absorbed by R2−1(φ1) in the 1st stage. This indi-

cates that θ2 is a redundant parameter. As shown in the

previous chapter, all the operations of the 1st stage can be

represented by the left basic deformation. Finally, the mini-

mum number of parameters for LOT(4× 8) is φ2 in the 2nd

stage and δ and ω in the left basic transformation[13]. Thus,

there are redundant operations between stages, and unnec-

essary rotation parameters can be organized and integrated.

In this case, the following equivalence transformation rules

are formed.
R1(θ)ρ1 = ρ1R1(−θ) (32)

R2(θ)ρ1 = ρ1R2(−θ) (33)

R1(θ)σ4 = σ4R2(θ) (34)

R2(θ)σ4 = σ4R1(θ) (35)

These rules are represented graphically in Figure 3.

3.3 Equivalent transformation rules for coding gain

The coding gain is widely used as a measure to evalu-

ate the coding efficiency of orthogonal transforms such as

LOT. As is clear from its definition, the value of the coding

gain does not change when operations such as substituting

the basis of the orthogonal transform, sign inversion of ±,

or mirroring are performed[13]. By integrating the equiva-

lent transformation rule for the basic symmetric matrix E4

7
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Fig. 3 Equivalent transformation rules between stages

shown in Figure 1 and the inter-stage equivalent transfor-

mation rule shown in Equations (32)～(35), we can derive

an equivalent transformation rule that makes the maximum

coding gain invariant.

For example, moving ρ1 in the 2nd stage to the 1st stage

is equivalent to ρ2, which is finally aggregated to the left

basic deformation. At the same time, all operations in the

1st stage are absorbed by the left basic deformation, so that

the maximum values of their coding gains are equal in the

rotation model I and II. This relationship holds for the ro-

tation models III and IV, leading to the following equivalent

transformation rules.
I ⇔ II (36)

III ⇔ IV (37)

3.4 Classification of LOT rotation models (4 × 8)

As shown in the previous section, there are 16 rotation

models for LOT(4 × 8) in total. However, using the equiv-

alent transformation rules (32)～(35) for the coding gains,

they are effectively classified into 2 groups. Basically, it is

sufficient to search for the parameters that maximize the

encoding gain for the 2 rotation models that represent this

group. In fact, for all (4×8) models with stage I, simulations

were performed to find the optimal solution of the rotation

parameter that maximizes the coding gain.

Table 9 shows the values when the autocorrelation coef-

ficient ρ of the coding gain is set to 0.95. The coding gain

was 7.960 (dB) for the 8 models for which the 2nd stage was

I and II, and 7.782 (dB) for the 8 models for which III and

IV. That is, the values were finally classified into 2 groups

independent of the 1st stage of operation. Note that when

the 1st stage is II，III，IV, the values of the rotation angles δ

and ω of Le and Lo may be inverted. However, the coding

gain and the value of the rotation angle θ2 of R2−2 remain

unchanged .

Table. 9 Optimum parameters of LOT(4 × 8) (2 groups)

Construction Optimum parameters Coding gain (max)

2nd stage R2−2 Le Lo (1st stage : I)

I α1 α2 α3 7.960(dB)

II −α1 −α2 −α3

III β1 β2 β3 7.782(dB)

IV −β1 −β2 −β3

α1 = 0.054π, α2 = 0.196π, α3 = −0.202π

β1 = 0.181π, β2 = 0.071π, β3 = 0.132π

3.5 Construction method of GenLOT rotation models(4×12)

As shown in Figure 4, the base length is extended from 8

to 12 by adding operations such as the rotation of the 3rd

stage (I～IV) to the rotational model of LOT(4 × 8). This

operation allows us to construct all bases of the general-

ized LOT(4 × 12). The total number of combinations is 64

(I−I−I)～(IV−IV−IV).

Figure 4 shows an example of model (III−III−III). Note

that this expression uses the right residue class. In the pre-

vious paper on rotation models[13], models using II,III, IV

after the 2nd stage have not been considered.

E 

R

R

R

R

L

L

R

R

Fig. 4 Rotation model of GenLOT(4 × 12) (III−III−III)

3.6 Equivalent Conversion Rules of Coding Gain for

GenLOT(4 × 12)

The generalized LOT rotation model (III−III−III) in Figure

4 can be equivalently transformed to the form (I−III−I) by

the following procedure.
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1. Cross section of 3rd stage (σ4) → 2nd stage

2. 2nd stage R2−2 → 3rd stage

3. Cross section of 1st stage (σ4) → 2nd stage

4. 2nd stage R1−2 → 1st stage

5. 3rd stage R2−3 → 2nd stage

The process of these operations is shown in Figure 5.

Here, R1−2 in the 2nd stage in Figure 5(a) is integrated

into R2−1 in the 1st stage and R1−3 in the 3rd stage into

R2−2 in the 2nd stage. Thus, the final 2nd stage is R2−2

and the 3rd stage is only R2−3. Also, R1−3 in the 3rd stage

of Figure 5(c) is integrated into R2−2.

Similarly, the rotation model (I−III−III) of the generalized

LOT can be equivalently transformed into the form (III−II

I−I) as follows.

1. Cross section of 3rd stage (σ4) → 2nd stage

2. 2nd stage R2−2 → 3rd stage

3. Cross section of 2nd stage (σ4) → 1st stage

4. 2nd stage R1−2 → 1st stage

5. 3rd stage R2−3 → 2nd stage

The process of these operations is shown in Figure 6. Note

that adding the transposition σ4 to the lower part of the

3rd stage in Figures 5(a) and 5(c) yields (c) and (a) in Fig-

ure 6, respectively. As a result, the following equivalence

transformation rules for the coding gain are derived.

III − III − III ⇔ I − III − I (38)

I − III − III ⇔ III − III − I (39)

Note that the generalized LOT (4×12) is finally integrated

into 4 parameters R2−2(φ2), R2−3(φ3), Le(δ) and Lo(ω).

Next, for the generalized LOT (4×12), the optimal solution

for the rotation parameter that maximizes the encoding gain

was obtained by computer simulation.

The results are shown in Table 10 for the case where the

1st stage is (I). From this, we confirmed that the coding

gains are classified into 3 groups: 1⃝8.214 (dB), 2⃝8.067

(dB), and 3⃝8.014 (dB). Note that all operations in the 1st

stage are absorbed by the left basic deformation, so they are

optional. All models whose 2nd stage is III, or IV are merged

into one group 3⃝ by the rules (32)～(35).

3.7 Construction method of GenLOT(4× 16) and its classifi-

cation

As shown in Figure 7, the base length is extended from

12 to 16 by adding a 4th stage (I IV) rotation operation to

Table. 10 Optimum parameters of GenLOT(4 × 12) (3

groups)

stage Optimum parameters Coding gain(max)
2nd 3rd R2−2 R2−3 Le Lo (1st stage:I)

I I α1 α2 α3 α4
II −α1 −α2 −α3 −α4 8.214(dB)

II I −α1 α2 −α3 −α4 α1 = 0.074π, α1 = −0.121π
II α1 −α2 α3 α4 α3 = 0.060π, α4 = −0.074π

I III β1 β2 β3 β4
IV −β1 −β2 −β3 −β4 8.067(dB)

II III −β1 β2 −β3 −β4 β1 = 0.067π,β2 = −0.031π
IV β1 −β2 β3 β4 β3 = 0.156π,β4 = 0.128π

I γ1 γ2 γ3 γ4
III II −γ1 −γ2 −γ3 −γ4

III −γ2 −γ1 γ3 −γ4 8.014(dB)
IV γ2 γ1 −γ3 γ4
I −γ1 γ2 −γ3 −γ4 γ1 = 0.016π, γ2 = −0.151π

IV II γ1 −γ2 γ3 γ4 γ3 = 0.089π, γ4 = 0.034π
III γ2 −γ1 −γ3 γ4
IV −γ2 γ1 γ3 −γ4

the (4 × 12) rotation model. This construction allows us to

represent all bases of the generalized LOT(4 × 16).

The number of combinations is 256 (I−I−I−I)～(IV−IV−I

V−IV). The figure shows the model of (III−III−I−III), which

is also expressed in terms of right residue class.

E 

R

R

R

R

L

L

R

R

R

R

Fig. 7 Rotation model of GenLOT(4 × 16) (III-III-I-III)

As in the previous section, the equivalent transformation

rules in (32)～(35) can be applied to the (4 × 16) rotation

model. Here, since (32) and (33) can be applied to 3 consec-

utive stages, they are finally classified into 4 groups repre-

senting the models 1⃝(I−I−I−I)， 2⃝(I−I−I−III), 3⃝(I−I−II

I−I) and 4⃝(I−III−I−I). (4 × 16) for the generalized LOT,

the parameters that maximize the coding gain are obtained

as shown in Table 11. Here, the 1st stage is optional, so the

basic (I) is chosen. By the operation of equivalence trans-

formation, the rotation parameters are integrated into five

parameters R2−2(θ2),R2−3(θ3),R2−4(θ4),Le(δ), and Lo(ω).

So far, we have organized methods to classify the rota-

tion models of the generalized LOT with (4 × 8), (4 × 12),
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Fig. 5 Equivalent transformation rules on coding gain of 4 dimensional GenLOT (III−III−III ⇔ I−III−I)
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Fig. 6 Equivalent transformation rules on coding gain of 4 dimensional GenLOT (I−III−III ⇔ III−III−I)

and (4× 16) into groups with equal maximum coding gains.

When the number of stages is set to 5 or more, the equiva-

lent transformation rules (32)～(35) can be applied to clas-

sify them into the same number of groups as the number

of stages. The optimal solution for the rotation parame-

ters is one of the solutions, to which permutations and sign

inversions are added to one of the solutions.

4 Construction method of 6-dimensional

orthonormal basis

4.1 Basis symmetric matrix E6 of orthonormal basis

For a 6-dimensional LOT, the (6 × 6) basic symmetric

matrix E6 is used as follows.

E6 =



1√
2

0 0 0 0 1√
2

0 1√
2

0 0 1√
2

0
0 0 1√

2
1√
2

0 0
1√
2

0 0 0 0 − 1√
2

0 1√
2

0 0 − 1√
2

0
0 0 1√

2
− 1√

2
0 0


(40)

Rows 1-3 of this matrix correspond to even-symmetric com-

ponents, and rows 4-6 to odd-symmetric component. Next,

we consider finite permutation operations that preserve the

3 conditions of symmetry, orthogonality, and norm 1 of E6

4.2 Symmetric permutation group Gσ formed by columns of

E6

The order of the permutation group consisting of 6 ele-

ments is 6! = 720, but not all of them preserve symme-

try. The symmetry-preserving substitution group of E6 for

the symmetry axis between columns 3 and 4 satisfies the

6-dimensional symmetry equation shown below.

f6 = x1 · x6 + x2 · x5 + x3 · x4 (41)

The order of this symmetric permutation group Gσ is 48,

as shown in Table 12, and even and odd permutations are

equal in number, 24.

Note that there are 6 symmetric transposition pairs of

even permutations with σ1, · · · , σ6, and 3 odd transposition

with σa, σb, andσc. In particular, symmetric transposition

pairs correspond to the symmetric rotation pairs shown in

the next section, and each stage has the same number of

rotation parameters, 6.

4.3 The sign inversion group Gρ for the columns of E6

As in the 4-dimensional case, the sign inversion group Gρ

for the E6 columns yields its order to be 23 = 8. The group

table is shown in Table 13. Note that Gσ is noncommutative,

but this Gρ is commutative.
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Table. 11 Optimum parameters of GenLOT(4 × 16) (4

groups)

stage optimum parameters Coding gain(max)
2nd 3rd 4th R2−2 R2−3 R2−4 Le Lo (1st stageI)

I I α1 α2 α3 α4 α5
I II −α1 −α2 −α3 −α4 −α5 8.359(dB)

II I −α1 −α2 α3 −α4 −α5
II α1 α2 −α3 α4 α5 α1 = −0.104π

I I −α1 α2 α3 −α4 −α5 α2 = 0.129π
II II α1 −α2 −α3 α4 α5 α3 = 0.163π

II I α1 −α2 α3 α4 α5 α4 = −0.183π
II −α1 α2 −α3 −α4 −α5 α5 = 0.186π

I III β1 β2 β3 β4 β5
I IV −β1 −β2 −β3 −β4 −β5 8.223(dB)

II III −β1 −β2 β3 −β4 −β5
IV β1 β2 −β3 β4 β5 β1 = −0.134π

I III −β1 β2 β3 −β4 −β5 β2 = 0.103π
II IV β1 −β2 −β3 β4 β5 β3 = 0.325π

II III β1 −β2 β3 β4 β5 β4 = 0.160π
IV −β1 β2 −β3 −β4 −β5 β5 = 0.040π

III I γ1 γ2 γ3 γ4 γ5
I II −γ1 −γ2 −γ3 −γ4 −γ5

IV I −γ1 −γ2 γ3 −γ4 −γ5
II γ1 γ2 −γ3 γ4 γ5

III I −γ1 γ2 γ3 −γ4 −γ5
II II γ1 −γ2 −γ3 γ4 γ5

IV I γ1 −γ2 γ3 γ4 γ5
II −γ1 γ2 −γ3 −γ4 −γ5

I III γ3 −γ1 −γ2 γ4 −γ5
IV −γ3 γ1 γ2 −γ4 γ5 8.220(dB)

II III −γ3 γ1 −γ2 −γ4 γ5
III IV γ3 −γ1 γ2 γ4 −γ5

III III γ1 −γ3 −γ2 γ4 γ5
IV −γ1 γ3 γ2 −γ4 −γ5

IV III −γ1 γ3 −γ2 −γ4 −γ5
IV γ1 −γ3 γ2 γ4 γ5 γ1 = −0.057π

I III −γ3 −γ1 −γ2 −γ4 γ5 γ2 = −0.379π
IV γ3 γ1 γ2 γ4 −γ5 γ3 = 0.104π

II III γ3 γ1 −γ2 γ4 −γ5 γ4 = −0.179π
IV IV −γ3 −γ1 γ2 −γ4 γ5 γ5 = 0.110π

III III −γ1 −γ3 −γ2 −γ4 −γ5
IV γ1 γ3 γ2 γ4 γ5

IV III γ1 γ3 −γ2 γ4 γ5
IV −γ1 −γ3 γ2 −γ4 −γ5

III III −δ2 −δ3 δ1 δ4 −δ5
I IV δ2 δ3 −δ1 −δ4 δ5

IV III δ2 δ3 δ1 −δ4 δ5
IV −δ2 −δ3 −δ1 δ4 −δ5

III III δ2 −δ3 δ1 −δ4 δ5
II IV −δ2 δ3 −δ1 δ4 −δ5

IV III −δ2 δ3 δ1 δ4 −δ5
IV δ2 −δ3 −δ1 −δ4 δ5

I I δ1 δ2 δ3 δ4 δ5 8.277(dB)
II −δ1 −δ2 −δ3 −δ4 −δ5

II I −δ1 −δ2 δ3 −δ4 −δ5
III II δ1 δ2 −δ3 δ4 δ5

III I −δ2 −δ1 δ3 δ4 −δ5
II δ2 δ1 −δ3 −δ4 δ5

IV I δ2 δ1 δ3 −δ4 δ5 δ1 = 0.255π
II −δ2 −δ1 −δ3 δ4 −δ5 δ2 = 0.080π

I I −δ1 δ2 δ3 −δ4 −δ5 δ3 = 0.214π
II δ1 −δ2 −δ3 δ4 δ5 δ4 = −0.141π

II I δ1 −δ2 δ3 δ4 δ5 δ5 = −0.132π
IV II −δ1 δ2 −δ3 −δ4 −δ5

III I δ2 −δ1 δ3 −δ4 δ5
II −δ2 δ1 −δ3 δ4 −δ5

IV I −δ2 δ1 δ3 δ4 −δ5
II δ2 −δ1 −δ3 −δ4 δ5

4.4 Symmetric permutation and sign inversion group G6 de-

rived from E6

From the 6-dimensional symmetric permutation group G

and the sign inversion group Gρ shown above, we obtain its

direct product G6. The order of G6 is 384 (48 × 8). As in

the 4-dimensional case, we can extract from G6 a normal

subgroup H6 that can be extended to a rotation group.

The order of this normal subgroup H is 96, and all the

elements of G6 are classified into the 4 residue classes C0 to

C3 using modulus H. Table 14 shows these residue classes

C0 to C3. Note that the signs (±) and (∓) are double-sign

corresponds. Next, we extend this finite normal subgroup

H to a symmetric subgroup of the special orthogonal group

SO(6) of 6th order, which is a topological group in a contin-

uous group. Every element of a normal subgroup H can be

Table. 12 The symmetric permutation group Gσ

formed by columns of matrix E6

even permutation odd permutation
1 2 3 4 5 6 identity σ0 1 2 4 3 5 6 trans- σa
1 3 2 5 4 6 σ1 1 5 3 4 2 6 position σb
3 2 1 6 5 4 symme- σ2 6 2 3 4 5 1 σc
2 1 3 4 6 5 tric σ3 1 3 5 2 4 6
1 4 5 2 3 6 pair of σ4 1 4 2 5 3 6
4 2 6 1 5 3 trans- σ5 2 1 4 3 6 5
5 6 3 4 1 2 positionσ6 2 3 6 1 4 5
2 3 1 6 4 5 2 4 1 6 3 5
3 1 2 5 6 4 2 6 3 4 1 5
1 5 4 3 2 6 3 1 5 2 6 4
2 4 6 1 3 5 3 2 6 1 5 4
2 6 4 3 1 5 3 5 1 6 2 4
3 5 6 1 2 4 3 6 2 5 1 4
3 6 5 2 1 4 4 1 2 5 6 3
4 1 5 2 6 3 4 2 1 6 5 3
4 5 1 6 2 3 4 5 6 1 2 3
4 6 2 5 1 3 4 6 5 2 1 3
5 1 4 3 6 2 5 1 3 4 6 2
5 3 6 1 4 2 5 3 1 6 4 2
5 4 1 6 3 2 5 4 6 1 3 2
6 2 4 3 5 1 5 6 4 3 1 2
6 3 5 2 4 1 6 3 2 5 4 1
6 4 2 5 3 1 6 4 5 2 3 1
6 5 3 4 2 1 6 5 4 3 2 1

Table. 13 Multiplication table of the sign inversion

group Gρ formed by columns of matrix E6

right \ left ρ0 ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7
ρ0 (+, +, +, +, +, +) ρ0 ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7
ρ1 (+, +, −, −, +, +) ρ1 ρ0 ρ3 ρ2 ρ5 ρ4 ρ7 ρ6
ρ2 (+, −, +, +, −, +) ρ2 ρ3 ρ0 ρ1 ρ6 ρ7 ρ4 ρ5
ρ3 (+, −, −, −, −, +) ρ3 ρ2 ρ1 ρ0 ρ7 ρ6 ρ5 ρ4
ρ4 (−, +, +, +, +, −) ρ4 ρ5 ρ6 ρ7 ρ0 ρ1 ρ2 ρ3
ρ5 (−, +, −, −, +, −) ρ5 ρ4 ρ7 ρ6 ρ1 ρ0 ρ3 ρ2
ρ6 (−, −, +, +, −, −) ρ6 ρ7 ρ4 ρ5 ρ2 ρ3 ρ0 ρ1
ρ7 (−, −, −, −, −, −) ρ7 ρ6 ρ5 ρ4 ρ3 ρ2 ρ1 ρ0

represented in the form of a product of symmetric rotation

pairs R1a(θ)，R1b(θ)，R2a(θ)，R2b(θ)，R3(θ)，and R4(θ) as

follows.

R1a(θ)=


cos θ − sin θ 0 0 0 0
sin θ cos θ 0 0 0 0

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 cos θ sin θ
0 0 0 0 − sin θ cos θ

 (42)

R1b(θ)=


1 0 0 0 0 0
0 cos θ − sin θ 0 0 0
0 sin θ cos θ 0 0 0
0 0 0 cos θ sin θ 0
0 0 0 − sin θ cos θ 0
0 0 0 0 0 1

 (43)

R2a(θ)=


cos θ 0 − sin θ 0 0 0

0 1 0 0 0 0
sin θ 0 cos θ 0 0 0

0 0 0 cos θ 0 sin θ
0 0 0 0 1 0
0 0 0 − sin θ 0 cos θ

 (44)

R2b(θ)=


1 0 0 0 0 0
0 cos θ 0 − sin θ 0 0
0 0 cos θ 0 sin θ 0
0 sin θ 0 cos θ 0 0
0 0 − sin θ 0 cos θ 0
0 0 0 0 0 1

 (45)
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Table. 14 Elements of the symmetric permutation and sign inversion group G6 and classification by the residue

classes (double-sign corresponds)

C0 (= H) C1 C2 C3
±1,±2, 3, 4,±5,±6 ±1,±2,-3,-4,±5,±6 ±1,±2, 4, 3,±5,±6 ±1,±2,-4,-3,±5,±6
±1,∓2,-3,-4,∓5,±6 ±1,∓2, 3, 4,∓5,±6 ±1,∓2,-4,-3,∓5,±6 ±1,∓2, 4, 3,∓5,±6
±1,∓3, 2, 5,∓4,±6 ±1,∓3,-2,-5,∓4,±6 ±1,∓3, 5, 2,∓4,±6 ±1,∓3,-5,-2,∓4,±6
±1,±3,-2,-5,±4,±6 ±1,±3, 2, 5,±4,±6 ±1,±3,-5,-2,±4,±6 ±1,±3, 5, 2,±4,±6
±1,∓4, 5, 2,∓3,±6 ±1,∓4,-5,-2,∓3,±6 ±1,∓4, 2, 5,∓3,±6 ±1,∓4,-2,-5,∓3,±6
±1,±4,-5,-2,±3,±6 ±1,±4, 5, 2,±3,±6 ±1,±4,-2,-5,±3,±6 ±1,±4, 2, 5,±3,±6
±1,±5, 4, 3,±2,±6 ±1,±5,-4,-3,±2,±6 ±1,±5, 3, 4,±2,±6 ±1,±5,-3,-4,±2,±6
±1,∓5,-4,-3,∓2,±6 ±1,∓5, 4, 3,∓2,±6 ±1,∓5,-3,-4,∓2,±6 ±1,∓5, 3, 4,∓2,±6
±2,∓1, 3, 4,∓6,±5 ±2,∓1,-3,-4,∓6,±5 ±2,∓1, 4, 3,∓6,±5 ±2,∓1,-4,-3,∓6,±5
±2,±1,-3,-4,±6,±5 ±2,±1, 3, 4,±6,±5 ±2,±1,-4,-3,±6,±5 ±2,±1, 4, 3,±6,±5
±2,±3, 1, 6,±4,±5 ±2,±3,-1,-6,±4,±5 ±2,±3, 6, 1,±4,±5 ±2,±3,-6,-1,±4,±5
±2,∓3,-1,-6,∓4,±5 ±2,∓3, 1, 6,∓4,±5 ±2,∓3,-6,-1,∓4,±5 ±2,∓3, 6, 1,∓4,±5
±2,±4, 6, 1,±3,±5 ±2,±4,-6,-1,±3,±5 ±2,±4, 1, 6,±3,±5 ±2,±4,-1,-6,±3,±5
±2,∓4,-6,-1,∓3,±5 ±2,∓4, 6, 1,∓3,±5 ±2,∓4,-1,-6,∓3,±5 ±2,∓4, 1, 6,∓3,±5
±2,∓6, 4, 3,∓1,±5 ±2,∓6,-4,-3,∓1,±5 ±2,∓6, 3, 4,∓1,±5 ±2,∓6,-3,-4,∓1,±5
±2,±6,-4,-3,±1,±5 ±2,±6, 4, 3,±1,±5 ±2,±6,-3,-4,±1,±5 ±2,±6, 3, 4,±1,±5
±3,±1, 2, 5,±6,±4 ±3,±1,-2,-5,±6,±4 ±3,±1, 5, 2,±6,±4 ±3,±1,-5,-2,±6,±4
±3,∓1,-2,-5,∓6,±4 ±3,∓1, 2, 5,∓6,±4 ±3,∓1,-5,-2,∓6,±4 ±3,∓1, 5, 2,∓6,±4
±3,∓2, 1, 6,∓5,±4 ±3,∓2,-1,-6,∓5,±4 ±3,∓2, 6, 1,∓5,±4 ±3,∓2,-6,-1,∓5,±4
±3,±2,-1,-6,±5,±4 ±3,±2, 1, 6,±5,±4 ±3,±2,-6,-1,±5,±4 ±3,±2, 6, 1,±5,±4
±3,∓5, 6, 1,∓2,±4 ±3,∓5,-6,-1,∓2,±4 ±3,∓5, 1, 6,∓2,±4 ±3,∓5,-1,-6,∓2,±4
±3,±5,-6,-1,±2,±4 ±3,±5, 6, 1,±2,±4 ±3,±5,-1,-6,±2,±4 ±3,±5, 1, 6,±2,±4
±3,±6, 5, 2,±1,±4 ±3,±6,-5,-2,±1,±4 ±3,±6, 2, 5,±1,±4 ±3,±6,-2,-5,±1,±4
±3,∓6,-5,-2,∓1,±4 ±3,∓6, 5, 2,∓1,±4 ±3,∓6,-2,-5,∓1,±4 ±3,∓6, 2, 5,∓1,±4
±4,±1, 5, 2,±6,±3 ±4,±1,-5,-2,±6,±3 ±4,±1, 2, 5,±6,±3 ±4,±1,-2,-5,±6,±3
±4,∓1,-5,-2,∓6,±3 ±4,∓1, 5, 2,∓6,±3 ±4,∓1,-2,-5,∓6,±3 ±4,∓1, 2, 5,∓6,±3
±4,∓2, 6, 1,∓5,±3 ±4,∓2,-6,-1,∓5,±3 ±4,∓2, 1, 6,∓5,±3 ±4,∓2,-1,-6,∓5,±3
±4,±2,-6,-1,±5,±3 ±4,±2, 6, 1,±5,±3 ±4,±2,-1,-6,±5,±3 ±4,±2, 1, 6,±5,±3
±4,∓5, 1, 6,∓2,±3 ±4,∓5,-1,-6,∓2,±3 ±4,∓5, 6, 1,∓2,±3 ±4,∓5,-6,-1,∓2,±3
±4,±5,-1,-6,±2,±3 ±4,±5, 1, 6,±2,±3 ±4,±5,-6,-1,±2,±3 ±4,±5, 6, 1,±2,±3
±4,±6, 2, 5,±1,±3 ±4,±6,-2,-5,±1,±3 ±4,±6, 5, 2,±1,±3 ±4,±6,-5,-2,±1,±3
±4,∓6,-2,-5,∓1,±3 ±4,∓6, 2, 5,∓1,±3 ±4,∓6,-5,-2,∓1,±3 ±4,∓6, 5, 2,∓1,±3
±5,∓1, 4, 3,∓6,±2 ±5,∓1,-4,-3,∓6,±2 ±5,∓1, 3, 4,∓6,±2 ±5,∓1,-3,-4,∓6,±2
±5,±1,-4,-3,±6,±2 ±5,±1, 4, 3,±6,±2 ±5,±1,-3,-4,±6,±2 ±5,±1, 3, 4,±6,±2
±5,±3, 6, 1,±4,±2 ±5,±3,-6,-1,±4,±2 ±5,±3, 1, 6,±4,±2 ±5,±3,-1,-6,±4,±2
±5,∓3,-6,-1,∓4,±2 ±5,∓3, 6, 1,∓4,±2 ±5,∓3,-1,-6,∓4,±2 ±5,∓3, 1, 6,∓4,±2
±5,±4, 1, 6,±3,±2 ±5,±4,-1,-6,±3,±2 ±5,±4, 6, 1,±3,±2 ±5,±4,-6,-1,±3,±2
±5,∓4,-1,-6,∓3,±2 ±5,∓4, 1, 6,∓3,±2 ±5,∓4,-6,-1,∓3,±2 ±5,∓4, 6, 1,∓3,±2
±5,∓6, 3, 4,∓1,±2 ±5,∓6,-3,-4,∓1,±2 ±5,∓6, 4, 3,∓1,±2 ±5,∓6,-4,-3,∓1,±2
±5,±6,-3,-4,±1,±2 ±5,±6, 3, 4,±1,±2 ±5,±6,-4,-3,±1,±2 ±5,±6, 4, 3,±1,±2
±6,±2, 4, 3,±5,±1 ±6,±2,-4,-3,±5,±1 ±6,±2, 3, 4,±5,±1 ±6,±2,-3,-4,±5,±1
±6,∓2,-4,-3,∓5,±1 ±6,∓2, 4, 3,∓5,±1 ±6,∓2,-3,-4,∓5,±1 ±6,∓2, 3, 4,∓5,±1
±6,∓3, 5, 2,∓4,±1 ±6,∓3,-5,-2,∓4,±1 ±6,∓3, 2, 5,∓4,±1 ±6,∓3,-2,-5,∓4,±1
±6,±3,-5,-2,±4,±1 ±6,±3, 5, 2,±4,±1 ±6,±3,-2,-5,±4,±1 ±6,±3, 2, 5,±4,±1
±6,∓4, 2, 5,∓3,±1 ±6,∓4,-2,-5,∓3,±1 ±6,∓4, 5, 2,∓3,±1 ±6,∓4,-5,-2,∓3,±1
±6,±4,-2,-5,±3,±1 ±6,±4, 2, 5,±3,±1 ±6,±4,-5,-2,±3,±1 ±6,±4, 5, 2,±3,±1
±6,±5, 3, 4,±2,±1 ±6,±5,-3,-4,±2,±1 ±6,±5, 4, 3,±2,±1 ±6,±5,-4,-3,±2,±1
±6,∓5,-3,-4,∓2,±1 ±6,∓5, 3, 4,∓2,±1 ±6,∓5,-4,-3,∓2,±1 ±6,∓5, 4, 3,∓2,±1

R3(θ)=


cos θ 0 0 − sin θ 0 0

0 1 0 0 0 0
0 0 cos θ 0 0 sin θ

sin θ 0 0 cos θ 0 0
0 0 0 0 1 0
0 0 − sin θ 0 0 cos θ

 (46)

R4(θ)=


cos θ 0 0 0 − sin θ 0

0 cos θ 0 0 0 sin θ
0 0 1 0 0 0
0 0 0 1 0 0

sin θ 0 0 0 cos θ 0
0 − sin θ 0 0 0 cos θ

 (47)

4.5 Basic rotation model with symmetric rotation pairs

Using the symmetric rotation pair R1a(θ1)，R1b(θ2)，

R2a(θ3)，R2b(θ4)，R3(θ5)，and R4(θ6), we define 4 basic

rotation models I～IV. BY this model, we can represent the

4 residue classes C0～C3 by setting the parameters θ1～θ6

of the symmetric rotation pairs appropriately.

4.5.1 Basic Rotation Model I (C0 = H)

The reference rotation model (I) is expressed using con-

tinuous parameters as follows.

E6R1a(θ1)R1b(θ2)R2a(θ3)R2b(θ4)R3(θ5)R4(θ6)

4.5.2 Basic Rotation Model II (C1)

There are various variations of the basic rotation model

corresponding to the residue class C1. For example, using

the left residue class of ρ1 ∈ C1, it can be expressed as

follows.

E6ρ1R1a(θ1)R1b(θ2)R2a(θ3)R2b(θ4)R3(θ5)R4(θ6)

4.5.3 Basic Rotation Model III (C2)

The basic rotation model corresponding to the residue

class C2, for example, using the left residue class of σa ∈ C2,

is as follows.

E6σaR1a(θ1)R1b(θ2)R2a(θ3)R2b(θ4)R3(θ5)R4(θ6)

4.5.4 Basic Rotation Model IV (C3)

The basic rotation model corresponding to the residue

class C3 is expressed as follows, using the left residue class

of σa ρ1 ∈ C3.

E6σaρ1R1a(θ1)R1b(θ2)R2a(θ3)R2b(θ4)R3(θ5)R4(θ6)

The right residue class can also be used to represent the basic

rotation model II～IV. where I and II of the basic rotation
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model are symmetric subgroups of the special orthogonal

group SO(6) and I～IV of the basic rotation model corre-

sponds to a symmetric subgroup of the orthogonal group

O(6)[15]. Note that unlike the 4-dimension case, the prod-

uct of these symmetric rotation pairs is noncommutative,

and the values of the rotation parameters are not preserved

if the order of the products is exchanged. However, by choos-

ing appropriate values, the order of products of symmetric

rotation pairs can be exchanged without changing the shape

of the basis[13].

5 Rotation model of 6-dimensional generalized LOT

This chapter describes how to construct a 6-dimensional

generalized LOT rotation model.

5.1 Construction method for 6-dimensional LOT (6 × 12)

In the previous section, we showed that for the 6 columns

of the basic symmetric matrix E6, all orthonormal bases

satisfying the 3 conditions 1⃝ symmetry, 2⃝ orthogonality,

and 3⃝ norm 1, can be generated by adding 4 operations

corresponding to the right basic deformation.

Applying the same operation to the above basis with a

shift of 3 columns, the length of the orthogonal basis is ex-

tended to 12 columns of 2 blocks. This operation gener-

ates all the bases of LOT(6 × 12) that satisfy the above 3

conditions[13]. For each of the 4 types of operations I～IV

in the 1st stage shown in the previous section, the rotation

operations in the 2nd stage I～IV are added, so the rotation

model is extended to 16 types of (I−I)～(IV−IV). Figure 8

shows an example of the model (IV−IV). In this example,

the right residue class representation is used, but it can also

be expressed in terms of the left residue class.

5.2 Equivalent conversion rule for coding gains in LOT(6×12)

As in the 4-dimensional case, the ρ1 operation can be

moved upstage, so the following equivalent transformation

rules for the coding gain are satisfied.

I ⇔ II (48)

III ⇔ IV (49)

5.3 Construction method for 6-dimensional GenLOT (6×18)

By adding operations such as the rotation of the 3rd stage

(I～IV) to the rotational model of LOT (6 × 12), the base

length is extended from 12 to 18. That is, bases of the

generalized LOT(6 × 18) can be constructed.

Figure 9 shows an example of the rotation model (III−I−I

II). Note that R1a−3,R1b−3,R2a−3 in the 3rd stage can be

E

L

L

R

R

R

R

R

R

R

R

R

R

R

R

Fig. 8 Rotation model of LOT(6 × 12)(IV−IV)

finally absorbed into R1a−2,R1b−2,R2a−2 by moving to the

2nd stage. Furthermore, R1a−2,R1b−2, and R2a−2 in the

2nd stage is equivalent to R1b−1,R2b−1, and R3−1 in the 1st

stage, respectively, and can be finally integrated into the

left basic deformation. In this case the minimum number of

rotation parameters is 12: 3 for R2b−3,R3−3, and R4−3 in

the 3rd stage, 3 for R2b−2,R3−2, and R4−2 in the 2nd stage,

3 for the left basic deformation Le, and 3 for Lo[13].

5.4 Equivalent conversion rule for coding gains in generalized

LOT (6 × 18)

For the rotation model (III−I−III) in Figure 9, by mov-

ing the cross section (σa) of the 1st and 3rd stages to the

2nd stage, an equivalent transformation is made as shown

in Figure 10. At this time, there remain operations above

and below the 2nd stage that correspond to permutations

shifted by one block (6 rows). That is, it is not equiva-

lent to (I−I−I) of the model as in the 4-dimensional case.

When the right basic deformation of the rotation model (I

II−I−III) is given the values 0,±π
2 ,π as the rotation angles

of the symmetric rotation pairs, 1248 patterns appear in to-

tal. These patterns were confirmed by simulation to be in

perfect agreement with the patterns in the model (I−I−I).

This shows that an equivalent transformation for the cod-

ing gain is established between the model (I−I−I) and the

model (III−I−III). Furthermore, by adding a transposition

σa to the lower part of the 3rd stage, it becomes clear that
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Fig. 9 Rotation model of GenLOT(6 × 18)(III−I−III)

model (I−I−III) and model (III−I−I) are equivalent. From

this, the equivalent conversion rule for the coding gain in 6

dimensions is as follows.

I − I − I ⇔ III − I − III (50)

I − I − III ⇔ III − I − I (51)

Next, the parameters that maximize the coding gain for the

generalized LOT of (6×12)～(6×24) were obtained by sim-

ulation. The results are shown in Table 15. Note that the

1st stage is optional, so the basic (I) is chosen.

For example, if we optimize the parameters for all models

in (6× 12) and find the maximum value of the coding gain,

we can divide them into 2 groups. Similarly, the (6×18) case

is classified into 3 groups, and the (6×24) case into 4 groups,

which are confirmed to follow the equivalent transformation

rules in (50),(51).

6 Rotation models of generalized LOT over 8

dimensions

6.1 Rotation models of generalized LOT

The 8th-order symmetry equation is shown below.

f8 = x1 x8 + x2 x7 + x3 x6 + x4 x5 (52)
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Fig. 10 Equivalent transformation rules on 6 dimen-

sional GenLOT (III−I−III) ⇔ (I−I−I)

Table. 15 Optimum parameters of 6 dimensional

GenLOT(6 × 12)～(6 × 24) and classifications

Size of Stage Coding gain

basis 2nd 3rd 4th max value(dB)

(6 × 12) I (II) 8.854

III (IV) 8.825

I (II) I (II) 9.019

(6 × 18) III (IV)

III (IV) I (II) 8.888

III (IV) 9.005

I (II) I (II) I (II)

III (IV) I (II) 9.123

III (IV) I (II) III (IV)

(6 × 24) I (II) I (II) III (IV)

III (IV) III (IV) 9.107

I (II) I (II)

III (IV) III (IV) I (II) 9.062

III (IV) 9.035

In this case, as shown in Table 16, the order of the symmetric

permutation group Gσ is 384, and that of the sign inversion

group Gρ is 16. The order of the symmetric permutation and

sign inversion group G represented by the direct product is

6144. The order of the normal subgroup H of G, which can

be extended to a rotation group, is 1536. Also, the number

of residue class formed by modulus H is 4.

In the same way, the orders of G and H in the 2n-

dimensional generalized LOT are obtained. However, in
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both cases, the number of residue classes is 4, and the num-

ber of models per stage is also 4.

Table. 16 Orders of the groups on GenLOT and its

classifications

Dimension of GenLOT

4 6 8 2n

Symmetric permutation 8 48 384 n!2n

group Gσ

Sign inversion group 4 8 16 2n

Gρ

Symmetric permutation・ 32 384 6144 n!22n

sign inversion group G

Normal subgroup of G 8 96 1536 n!22(n−1)

H

Number of column 2 6 12 n(n − 1)

rotation parameters

residue class of G 4

for modulus H

6.2 Equivalent transformation rules for coding gain

In the rotation model of the generalized LOT, when the

angles of the symmetric rotation pairs are set to 0, ±π
2 ,π as

in Tables 7 and 8, the number of patterns for the sequence

of columns of the basic symmetric matrix E is organized as

shown in Table 17. Note that, of course, the 1st stage is

equal to the order of H. In the 8-dimensional 3rd stage, a

Table. 17 The numbers of rotation model patterns with

fixed value of rotation angles

Rotation model Dimension of GenLOT

4 6 8 2n

1st stage 8 96 1536 n!22(n−1)

2nd stage 16 384 12288 n!23(n−1)

3rd stage 32 1248 61440 n!22(n−1)
n∑

i=1

3i−1

combination of rotation parameters transforms the 8-column

sequence of the basic symmetric matrix E8 into 61440 differ-

ent patterns. For the models (I−III−I) and (III−III−III), we

compared their patterns by computer simulation and found

them to be in perfect agreement. This shows that the max-

imum values of these coding gains are equal and that the

same equivalent transformation rules (32)～(35) hold as for

the 4-dimension GenLOT.

Equivalent conversion rules for coding gain are shown in

Table 18. Comparing the (8)-dimensional and 6-dimensional

rules, (I) and (III) are interchanged.

The generalized LOT in 10 dimensions has a large num-

ber of combinations, and its validation is an issue to be

addressed in the future. However, it is expected to be con-

sistent with 6 dimensions.

Table. 18 Equivalent transformation rules on coding

gain of GenLOT

Dimension Equivalent transformation rules

4, 8 I ⇔ II I−III−I ⇔ III−III−III

[4n] I−III−III ⇔ III−III−I

6 III ⇔ IV III−I−III ⇔ I−I−I

[2(2n + 1)] III−I−I ⇔ I−I−III

7 Conclusion

We have identified methods for constructing rotational

models of linear phase generalized LOTs in which all or-

thonormal bases can be represented. In order to concisely

describe all combinations of operations such as rotation and

permutation of the LOT basis, we define a finite symmet-

ric permutation group and a sign inversion group for the

columns of a basic symmetric matrix, and extract a nor-

mal subgroup H from their direct product G that can be

extended to a continuous rotation group. Next, we pro-

posed methods to integrate redundant operations existing

between stages by classifying the elements of G into 4 residue

classes using modulus H and generating rotation models cor-

responding to them.

Since the variation of this rotation model increases by a

factor of 4 per stage, a method to efficiently search for the

optimal parameters is required. We focused on the prop-

erty that the coding gain, which is widely used as a measure

of coding efficiency, is invariant to operations such as LOT

basis substitution, sign reversal of ±, and mirroring, and

clarified the equivalent transformation rules between stages

whose optimal values are preserved in 4-dimensional and 6-

dimensional rotation models. Furthermore, by organizing

and integrating the above rotation model using the 4 ex-

tracted rules, it was shown that the model can be classified

into groups equal to the number of stages
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This allows the design of generalized LOTs to be opti-

mized using the fewest number of parameters for a represen-

tative model equal to the number of stages, greatly reducing

the amount of work required for searching, etc. Future work

is to verify the equivalent transformation rule of the coding

gain for generalized LOTs of 10 or more dimensions, and to

extend this method to odd dimensions
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