直線位相一般化 LOT の完備な回転モデルとその分類法

Complete Rotation Models and Classification Methods of Linear-phase Generalized LOT

井澤	裕司	Yuji IZAWA
高橋	速巳	Hayami TAKAHASHI
		(2017.1.15)

あらまし

本稿は,すべての正規直交基底が表現可能な直線位相一般化 LOT の回転モデルの構成法に関するもので ある.多次元直交空間における正規直交基底について,各ステージ毎に基底の両側に次元を拡張し,対称性 と直交性,ノルム1の3条件を保存する回転や置換等の操作を加えることにより,一般化 LOT の基底を 生成することができる.この操作は群の性質をもつことが知られているが,これらのすべての組み合せを簡 潔に記述するため,基本対称行列の列に関する対称式から,有限な対称置換群と対称符号反転群が導かれる ことを示す.上記対称式を満たすすべての操作は,それらを組み合せた直積 G により表されるが,これか ら連続な回転群へ拡張可能な正規部分群 H を抽出し,これを法とする4つの剰余類に類別されることを示 す.回転モデルは,各ステージ毎に4つの類に対応する操作を繰り返すことにより構成されるが,ステージ 数が増えると組み合せの数が4のべき乗で増加するため,最適パラメータ探索の効率化が課題となる.そ こで,ステージ間に残されている冗長な操作を統合するため,符号化効率の評価尺度として広く用いられる 符号化ゲインが,LOT 基底の置換や±の符号反転,鏡映等の操作に対し不変となる性質に着目し,4~8 次元の回転モデルにおいて,その最適値が保存されるステージ間の等価変換規則について検討した.更に, 抽出した4つの規則を用いて上記回転モデルを整理・統合することにより,最終的にステージ数に等しい グループに分類されることを明らかにする.

1 まえがき

画像の変換符号化には,直交変換を用いたブロック符号 化や,フィルタバンクを用いたサブバンド符号化がある. Malver らは, DCT(Discrete Cosine Transform)[1]の圧縮率 を上げた場合に発生するブロック歪を改善するため, DCTの 偶数次と奇数次の基底を組み合せ,ブロックサイズの2倍の 基底長に拡張することにより,直交性と直線位相,完全再構 成の条件を満たす LOT(Lapped Orthogonal Transform) が 構成できることを明らかにした [2]. 更に,拡張した基底の対 称性を利用して,隣接するブロックの変換をブロック内の遅 延素子で代行し,加減算のバタフライ演算を導入することに より,実質的な乗算数を低減する手法を提案した[3].一方, Vetterli らはいわゆるポリフェーズ行列を用いて, LOT と フィルタバンクが等価な変換であることを示し,完全再構成 や直交性を有するフィルタの設計法を,一定の遅延を許容す るポリフェーズ行列の正則性やパラユニタリ性と位置付けて 解析する手法を提案した [4],[5].

LOT では変換の対称性が生かせるよう,ブロックサイズ を偶数に設定していた [2].フィルタバンクの場合,これらは チャネル数あるいは分割数に相当するが, Soman らはその条件を一般化し,直交性と直線位相をもつ任意のチャネル数のフィルタバンクを構成する手法 (GenLOT)を提案した[6]. また,Queirozらはこれを発展させ,ブロックサイズの整数倍の基底をもつLOTの構成法について報告している[7],[8].

一方,LOTにおける回転操作が,対称な回転群を構成する ことから,群の性質を用いて多次元の直線位相LOTを効率 的に設計する手法が提案されている[11][12].ここでは,直交 座標系の回転に基づく幾何学モデルを用いて,LOTのすべて の基底の状態が表現可能な最小限のパラメータ群が示されて いる.また,これらの回転モデルを拡張することにより,基 底長がブロックサイズの整数倍に拡大された直線位相の一般 化LOTを設計する手法が提案されている[13].

このように LOT については,既に様々な設計手法や最適 化手法が数多く報告されているが,符号化ゲインのような評 価尺度の最適値が全体で何通り存在するのか?という問につ いては,未だ解答は示されてはいない.

例えば,一般化 LOT の設計に広く用いられているラティ スモデルは,各ステージ毎に,バタフライ状の加減算と遅延素 子,2つの直交変換部から構成される.その最適化では,最少 の回転パラメータ数を求め,符号化ゲイン等の評価尺度を用 いて,この値が最大となるパラメータの値が決定される.し かし,直交変換部が回転操作のみ,すわなち行列式が1の場 合については詳細に検討されているものの,回転に奇置換を 組み込んだ行列式が-1の場合については,厳密な検討は行 われていなかった.更に,直交変換部の行列式が $1 \ge -1$ の 場合では,基底の形状や符号化ゲインの最適解が基本的に異 なると考えられる.ステージ数が増えると,その組み合せの 数はべき乗で増加するため,最適化をより効率的に行う手法 が求められるが,従来のラティスモデルでは遅延素子 z^{-1} が 含まれるため,ステージ間の冗長な操作を簡略化することは 容易ではなかった.

本研究の目的は,シンプルな幾何学的構造を有する回転モ デルを導入し,ステージ間の等価な操作を整理・統合するこ とにより,複数の最適解とこれに対応するモデルを分類する ことにある.

ー般に,離散フーリエ変換 (DFT)の変換行列には規則性・ 対称性があり, $A \cdot B + A \cdot C = A(B + C)$ のような分配則に 基づく加減算のバタフライ演算により,実質的な乗算数を低 減すると,いわゆる高速フーリエ変換 (FFT)が導出される.

上記回転モデルにおいても,各ステージの回転操作には対称性があり,最も基本的なモデルについて,加減算のバタフラ イ演算等を用いて回転の乗算部を統合すると,従来のラティ ス構造による一般化 LOT が導かれる [13].

本稿では,はじめに 4~8 次元の一般化 LOT について,す べての基底の状態を表しうる回転モデルを簡潔に記述するた め,拡張した対称式から,有限な対称置換群と対称符号反転 群を導出する.上記対称式を満たすすべての操作は,それら を組み合せた直積 G により表されるが,これから連続な回転 群へ拡張可能な正規部分群 H を抽出し,これを法とする 4 つ の剰余類に類別されることを示す.

この回転モデルは,各ステージ毎に4つの類に対応する操 作を繰り返すことにより構成されるが,ステージ数が増える と組み合せの数が4のべき乗で増加する.そこで,ステージ 間に残されている冗長な操作を統合するため,符号化効率の 評価尺度として広く用いられる符号化ゲインが,LOT 基底 の置換や±の符号反転,鏡映等の操作に対し不変となる性質 に着目し,4~8次元の回転モデルにおいて,その最適値が保 存されるステージ間の等価変換規則について検討した.更に, 抽出した4つの規則を用いて上記回転モデルを整理・統合す ることにより,最終的にステージ数に等しいグループに分類 されることを明らかにする[14]. 2 4次元正規直交基底の構成法

はじめに,対称性のある4次元正規直交基底の構成法について整理する[11].

2.1 正規直交基底の基本対称行列 *E*₄

直線位相となるすべての 4 次元正規直交基底は,次に示す (4×4)の行列 T₄ を用いて表すことができる.

$$T_4 = \begin{pmatrix} a_1 & a_2 & a_2 & a_1 \\ b_1 & b_2 & b_2 & b_1 \\ c_1 & c_2 & -c_2 & -c_1 \\ d_1 & d_2 & -d_2 & -d_1 \end{pmatrix}$$
(1)

行列 T_4 の各行が基底に対応し,2 列と3 列の間の垂直な対称軸に関して,1 行と2 行は偶対称成分,3 行と4 行は奇対称成分となる.

これらが正規直交系を構成する条件は次のようになる.

$$a_1^2 + a_2^2 = \frac{1}{2} \tag{2}$$

$$b_1^2 + b_2^2 = \frac{1}{2} \tag{3}$$

$$c_1^2 + c_2^2 = \frac{1}{2} \tag{4}$$

$$d_1^2 + d_2^2 = \frac{1}{2} \tag{5}$$

$$a_1 \cdot b_1 + a_2 \cdot b_2 = 0 \tag{6}$$

$$c_1 \cdot d_1 + c_2 \cdot d_2 = 0 \tag{7}$$

ここで,式(2)~(5)は基底のノルム,式(6)~(7)は基底間 の直交条件を表している.

なお,ラティスモデル式の表現 [6] を用いれば, $I_2 \in (2 \times 2)$ の単位行列, $J_2 を要素が1の反対角行列(2 \times 2) として,式(1) は以下のように表される.$

$$S_0 = \left(\begin{array}{cc} a_1 & a_2\\ b_1 & b_2 \end{array}\right) \tag{8}$$

$$S_1 = \begin{pmatrix} c_1 & c_2 \\ d_1 & d_2 \end{pmatrix} \tag{9}$$

$$T_4 = \frac{1}{\sqrt{2}} \begin{pmatrix} S_0 & 0\\ 0 & S_1 \end{pmatrix} \begin{pmatrix} I_2 & J_2\\ I_2 & -J_2 \end{pmatrix}$$
(10)

同様に,

$$D = \left(\begin{array}{cc} I_2 & 0\\ 0 & -I_2 \end{array}\right) \tag{11}$$

としたとき,式(2)~(7)は以下の式に等価となる.

$$T_4^t \cdot D \cdot T_4 = J_4 \tag{12}$$

一方,4次元の単位行列 I_4 に回転操作を加えることにより, 2列と3列の間を垂直な対称軸とし, (2×2) の対角行列を対称に配置した基本対称行列 E_4 を生成することができる.ここで,1行と2行は偶対称成分,3行と4行は奇対称成分に対応する.

$$E_4 = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & 0 & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & 0 & 0 & -\frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \end{pmatrix}$$
(13)

基本対称行列 E_4 に一定の変形操作を加えることにより,対称性のあるすべての 4 次元正規直交基底 T_4 を生成することができる.

2.2 *E*₄ の対称性を保存する列の操作

すべての正規直交基底を表しうる T_4 を生成するためには, 回転のように連続性のある変形操作を加える必要があるが, その解は無限に存在する.そこで,基本対称行列 E_4 の対称 性と直交性,ノルム1の3条件を保存する有限な列の操作に ついて検討する [14].

ー般に列の入れ替えは,4次元直交空間の座標軸の置換操作に対応し,4次の有限な対称群(置換群)S(4)を構成する [15][16].S(4)における置換の総数,すなわち位数は4! = 24となるが,必ずしも式 $(2) \sim (7)$ の条件を満たすとは限らない.

2 列と 3 列の間を対称軸とする列の置換は,列の番号を x_1 ~ x_4 として,4 次の対称式 f_4 が不変となる条件を満たす必要 がある [11].

$$f_4 = x_1 \cdot x_4 + x_2 \cdot x_3 \tag{14}$$

例えば,1列(x_1)と2列(x_2),3列(x_3)と4列(x_4)の置換を同時に行っても,式の形は不変となり,式(2)~(7)を満たすことは明らかである.

対称式 f_4 を満たす置換は表 1 に示すように 2! $2^2 = 8$ 個存 在し,対称群を構成する.本稿では,これを対称置換群 G_σ と呼ぶことにする.ここで $\sigma_0 \sim \sigma_3$ は偶置換, $\sigma_4 \sim \sigma_7$ は奇置 換であり, σ_0 は恒等置換, σ_4 および σ_5 は互換となる.また $\sigma_n^{-1} = \sigma_n \ (n = 0, 1, \dots, 5)$ が成立し, $\sigma_6^{-1} = \sigma_7$, $\sigma_7^{-1} = \sigma_6$ となる.

置換 $\sigma_n \ \epsilon \ (4 \times 4) \ o$ 行列 $T_{\sigma_n} \ (n = 0, 1, \dots, 7) \ \epsilon$ 用いて 表すこともできる.このとき, $T_{\sigma_n}^{-1} = T_{\sigma_n}^t$ より直交行列(実 ユニタリ行列)となる.この行列 $T_{\sigma_n} \ \epsilon$ 用いて,列の置換を $E_4 \cdot T_{\sigma_n} \ o$ ように表すことができるが,基本対称行列 $E_4 \ o$

表 1 E_4 の列に関する対称置換群 G_σ

	列置換	x_1	x_2	x_3	x_4	互換表現(一例)
偶	σ_0	1	2	3	4	恒等置換
置	σ_1	2	1	4	3	(1,2)(3,4)
換	σ_2	3	4	1	2	(1,3)(2,4)
	σ_3	4	3	2	1	(1,4)(2,3)
奇	σ_4	1	3	2	4	互換 (2,3)
置	σ_5	4	2	3	1	互換 (1,4)
換	σ_6	2	4	1	3	(1,3)(2,4)(1,4)
1	07	3	1	4	2	(1 2)(3 4)(1 4)

右から T_{σ_n} を乗じるので,これらの操作を右基本変形と呼ぶことにする.

これらの置換の組み合せ(積)を表形式にまとめた群表を表 2に示す.これより,置換の積 $(\sigma_m \sigma_n)$ は行列の積 $(T_{\sigma_m} T_{\sigma_n})$ と同様非可換となることが分かる.

表 2 対称置換群 G_{σ} の群表

	右 \ 左		偶置換				奇置換			
		σ_0	σ_1	σ_2	σ_3	σ_4	σ_5	σ_6	σ_7	
偶	$\sigma_0(1, 2, 3, 4)$	σ_0	σ_1	σ_2	σ_3	σ_4	σ_5	σ_6	σ_7	
置	$\sigma_1(2, 1, 4, 3)$	σ_1	σ_0	σ_3	σ_2	σ_6	σ_7	σ_4	σ_5	
換	$\sigma_2(3, 4, 1, 2)$	σ_2	σ_3	σ_0	σ_1	σ_7	σ_6	σ_5	σ_4	
	$\sigma_3(4, 3, 2, 1)$	σ_3	σ_2	σ_1	σ_0	σ_5	σ_4	σ_7	σ_6	
奇	$\sigma_4(1, 3, 2, 4)$	σ_4	σ_7	σ_6	σ_5	σ_0	σ_3	σ_2	σ_1	
置	$\sigma_5(4, 2, 3, 1)$	σ_5	σ_6	σ_7	σ_4	σ_3	σ_0	σ_1	σ_2	
換	$\sigma_6(2, 4, 1, 3)$	σ_6	σ_5	σ_4	σ_7	σ_1	σ_2	σ_3	σ_0	
	$\sigma_7(3, 1, 4, 2)$	σ_7	σ_4	σ_5	σ_6	σ_2	σ_1	σ_0	σ_3	

2.3 *E*₄ の対称性を保存する符号反転

前節では、4次の対称式 f_4 を不変とする列の置換について 検討したが、この条件を満たすのは置換だけではない、例え ば 2 列の x_2 と 3 列の x_3 の符号 (±)を同時に反転しても、式 の形は変わらない、ここで、表 3 に示すように単位元に相当 する操作 $\rho_0(+,+,+,+)$ を基準として、対称な列の符号(±) を反転する操作 ρ_1 , ρ_2 , ρ_3 を定義する、このとき、 $\rho_0 \sim \rho_3$ の 間に乗算を定義することができ、例えば以下のような関係が 成立する、

$$\rho_1 \cdot \rho_2 = \rho_2 \cdot \rho_1 = \rho_3 \tag{15}$$

すなわち,前節の置換と同様対称群を構成し,これを符号 反転群 G_ρ と呼ぶことにする.

表 3 E_4 の列に関する符号反転群 G_ρ の群表

右 \ 左	ρ	ρ_1	ρ_2	ρ_3
$\rho_0 (+, +, +, +)$	ρο	ρ_1	ρ_2	ρ_3
ρ_1 (+, -, -, +)	ρ_1	ρ_0	ρ_3	ρ_2
$\rho_2 (-, +, +, -)$	ρ_2	ρ_3	ρο	ρ_1
$\rho_3(-, -, -, -)$	ρ3	ρ_2	ρ_1	ρ_0

置換と同様,符号反転群 G_{ρ} の元を (4×4) の直交行列を 用いて表すこともできる.例えば, ρ_1 の場合, (4×4) の単 位行列 I_4 の2列と3列の対角項を -1としたものに等しい. なお, σ_4,σ_5 は E_4 の列の値を入れ替えるのに対し, ρ_1,ρ_2,ρ_3 は列の値を変えずに ± の符号を反転させる操作となり,その 積は可換となる.

2.4 対称置換・符号反転群 G

対称な列の置換 $\sigma_0 \sim \sigma_7$ は位数 8 の対称置換群 $G_\sigma \epsilon$,対称な符号反転 $\rho_0 \sim \rho_3$ は位数 4 の符号反転群 G_ρ を構成する. これらは,いずれも対称な成分をもつ (4×4) の直交行列で表すことができ,その間に乗算を定義することができる.なお, $\sigma \ge \rho$ の積については,

$$\sigma_1 \cdot \rho_1 = \rho_2 \cdot \sigma_1 \tag{16}$$

$$\sigma_1 \cdot \rho_2 = \rho_1 \cdot \sigma_1 \tag{17}$$

$$\sigma_2 \cdot \rho_1 = \rho_2 \cdot \sigma_2 \tag{18}$$

$$\sigma_2 \cdot \rho_2 = \rho_1 \cdot \sigma_2 \tag{19}$$

$$\sigma_6 \cdot \rho_1 = \rho_2 \cdot \sigma_6 \tag{20}$$

$$\sigma_6 \cdot \rho_2 = \rho_1 \cdot \sigma_6 \tag{21}$$

$$\sigma_7 \cdot \rho_1 = \rho_2 \cdot \sigma_7 \tag{22}$$

$$\sigma_7 \cdot \rho_2 = \rho_1 \cdot \sigma_7 \tag{23}$$

のように非可換となる.

これらの組み合せは 32 通りあり, 直積 $[G_{\sigma} \times G_{\rho}]$ と呼ばれ る位数 32 の対称群を構成する.本稿では,これを対称置換・ 符号反転群 G と呼ぶことにする.

2.5 対称置換・符号反転群 G の正規部分群 H

対称置換・符号反転群 G の構造を明らかにするため,その 部分群とそれらの性質について検討する.

Gには自明でない真の部分群が複数存在する.その中で最 大となるのは位数 16,指数 2の正規部分群 H_{16} であり,その 元はすべて偶置換の $\sigma_0 \sim \sigma_3$ の項を含み,非可換となる.

更に, G には位数 8, 指数 4 の正規部分群が 2 つ存在する が, その中の H₈ は表 5 の群表に示すように可換となり,連 続な回転群へと拡張することができる.

表 5 G の正規部分群 H₈ の群表

右∖左	$\sigma_0 \rho_0$	$\sigma_0 \rho_3$	$\sigma_1 \rho_1$	$\sigma_1 \rho_2$	$\sigma_2 \rho_1$	$\sigma_2 \rho_2$	$\sigma_3 \rho_0$	$\sigma_3 \rho_3$
$\sigma_0 \rho_0$	$\sigma_0 \rho_0$	$\sigma_0 \rho_3$	$\sigma_1 \rho_1$	$\sigma_1 \rho_2$	$\sigma_2 \rho_1$	$\sigma_2 \rho_2$	$\sigma_3 \rho_0$	$\sigma_3 \rho_3$
$\sigma_0 \rho_3$	$\sigma_0 \rho_3$	$\sigma_0 \rho_0$	$\sigma_1 \rho_2$	$\sigma_1 \rho_1$	$\sigma_2 \rho_2$	$\sigma_2 \rho_1$	$\sigma_3 \rho_3$	$\sigma_3 \rho_0$
$\sigma_1 \rho_1$	$\sigma_1 \rho_1$	$\sigma_1 \rho_2$	$\sigma_0 \rho_3$	$\sigma_0 \rho_0$	$\sigma_3 \rho_3$	$\sigma_3 \rho_0$	$\sigma_2 \rho_1$	$\sigma_2 \rho_2$
$\sigma_1 \rho_2$	$\sigma_1 \rho_2$	$\sigma_1 \rho_1$	$\sigma_0 \rho_0$	$\sigma_0 \rho_3$	$\sigma_3 \rho_0$	$\sigma_3 \rho_3$	$\sigma_2 \rho_2$	$\sigma_2 \rho_1$
$\sigma_2 \rho_1$	$\sigma_2 \rho_1$	$\sigma_2 \rho_2$	$\sigma_3 \rho_3$	$\sigma_3 \rho_0$	$\sigma_0 \rho_3$	$\sigma_0 \rho_0$	$\sigma_1 \rho_1$	$\sigma_1 \rho_2$
$\sigma_2 \rho_2$	$\sigma_2 \rho_2$	$\sigma_2 \rho_1$	$\sigma_3 \rho_0$	$\sigma_3 \rho_3$	$\sigma_0 \rho_0$	$\sigma_0 \rho_3$	$\sigma_1 \rho_2$	$\sigma_1 \rho_1$
$\sigma_3 \rho_0$	$\sigma_3 \rho_0$	$\sigma_3 \rho_3$	$\sigma_2 \rho_1$	$\sigma_2 \rho_2$	$\sigma_1 \rho_1$	$\sigma_1 \rho_2$	$\sigma_0 \rho_0$	$\sigma_0 \rho_3$
$\sigma_3 \rho_3$	$\sigma_3 \rho_3$	$\sigma_3 \rho_0$	$\sigma_2 \rho_2$	$\sigma_2 \rho_1$	$\sigma_1 \rho_2$	$\sigma_1 \rho_1$	$\sigma_0 \rho_3$	$\sigma_0 \rho_0$

2.6 正規部分群 H_8 を法とする剰余類 $C_0 \sim C_3$ による類別 対称群の性質から, H_8 を用いて, G の元を互いに共通する 元をもたない 4 つの類 $C_0 \sim C_3$ に類別することができる [15]. すなわち,

$$G = C_0 \cup C_1 \cup C_2 \cup C_3 \tag{24}$$

$$C_i \cap C_k = \emptyset \qquad (j \neq k) \tag{25}$$

となる $C_0 \sim C_3$ が存在し,その位数は表 6 に示すようにす べて 8 となる.ここで, $C_0 \sim C_3$ は G の正規部分群 H_8 を法 とする剰余類 (左剰余類および右剰余類)に相当し,

表 6 G の元の C₀, C₁, C₂, C₃ による類別

		σ_0	σ_1	σ_2	σ_3	σ_4	σ_5	σ_6	σ_7
ρ_0	類	$C_0^{\sigma_0 \rho_0}$	${\scriptstyle \begin{array}{c}\sigma_{1}\rho_{0}\\C_{1}\end{array}}$	$C_1^{\sigma_2 \rho_0}$	${}^{\sigma_3 ho_0}_{C_0}$	${}^{\sigma_4 ho_0}_{C_2}$	${}^{\sigma_5 ho_0}_{C_2}$	${}^{\sigma_6 ho_0}_{C_3}$	$C_3^{\sigma_7 ho_0}$
ρ_1	類	$\left \begin{array}{c} \sigma_0 \rho_1 \\ C_1 \end{array} \right $	$C_0^{\sigma_1 \rho_1}$	$C_0^{\sigma_2 \rho_1}$	$C_1^{\sigma_3 \rho_1}$	$C_3^{\sigma_4 \rho_1}$	$C_3^{\sigma_5 \rho_1}$	$C_2^{\sigma_6 \rho_1}$	$C_2^{\sigma_7 \rho_1}$
ρ_2	類	$\left \begin{smallmatrix} \sigma_0 \rho_2 \\ C_1 \end{smallmatrix} \right $	$C_0^{\sigma_1 \rho_2}$	$C_0^{\sigma_2 \rho_2}$	$C_1^{\sigma_3 \rho_2}$	$C_3^{\sigma_4 \rho_2}$	$C_3^{\sigma_5 \rho_2}$	$C_2^{\sigma_6 \rho_2}$	$C_2^{\sigma_7 \rho_2}$
ρ_3	類	$\begin{bmatrix} \sigma_0 \rho_3 \\ C_0 \end{bmatrix}$	$C_1^{\sigma_1 \rho_3}$	$C_1^{\sigma_2 \rho_3}$	$C_0^{\sigma_3 ho_3}$	$C_2^{\sigma_4 ho_3}$	${}^{\sigma_5 ho_3}_{C_2}$	$C_3^{\sigma_6 ho_3}$	$C_3^{\sigma_7 ho_3}$

$$C_0 = (\sigma_0 \cdot \rho_0) \cdot H_8 = H_8 \cdot (\sigma_0 \cdot \rho_0) = H_8$$
(26)

$$C_1 = g_1 \cdot H_8 = H_8 \cdot g_1 \qquad (g_1 \in C_1) \qquad (27)$$

$$C_2 = g_2 \cdot H_8 = H_8 \cdot g_2 \qquad (g_2 \in C_2) \qquad (28)$$

$$C_3 = g_3 \cdot H_8 = H_8 \cdot g_3 \qquad (g_3 \in C_3) \qquad (29)$$

のように表すことができる.

次に,この有限な正規部分群 H₈ を,連続群の中の位相群 に位置付けられる 4 次の特殊直交群 *SO*(4) の対称な部分群 へと拡張する.

正規部分群の H_8 のすべての元は,それぞれ列に関する対称な回転操作の対を表す $R_1(\theta)$ および $R_2(\phi)$ により表現することができ,これを対称回転対と呼ぶことにする.

$$R_1(\theta) = \begin{pmatrix} \cos\theta & -\sin\theta & 0 & 0\\ \sin\theta & \cos\theta & 0 & 0\\ 0 & 0 & \cos\theta & \sin\theta\\ 0 & 0 & -\sin\theta & \cos\theta \end{pmatrix}$$
(30)

$$R_{2}(\phi) = \begin{pmatrix} \cos\phi & 0 & -\sin\phi & 0\\ 0 & \cos\phi & 0 & \sin\phi\\ \sin\phi & 0 & \cos\phi & 0\\ 0 & -\sin\phi & 0 & \cos\phi \end{pmatrix}$$
(31)

連続な実変数である θ , ϕ は回転角に対応し,これらの回転の積 $R_1(\theta) \cdot R_2(\phi)$ は可換となる.この対称回転対 $R_1(\theta)$, $R_2(\phi)$ を用いて, 剰余類 $C_0 \sim C_3$ を拡張した 4 つのモデルを定義する.この各モデルにおいて, 表 7,8 に示す 0, $\pm \frac{\pi}{2}$, π の回転角を与えることにより, Gのすべての元を表すことができる.

2.7 対称回転対を用いた基本回転モデル

対称回転対 R_1 , R_2 の回転パラメータ θ , ϕ を連続量とみな すことにより, 剰余類 $C_0 \sim C_3$ に対応する 4 つの基本回転モ デル I ~ IV を定義する.

表 4 4 次元における対称置換群と符号反転群の直積 $[G_{\sigma} \times G_{\rho}]$

			符号反	気転群 G _ρ	
	対称置換群 G_{σ}	ρ0	ρ1	ρ2	ρ3
		(+, +, +, +)	(+, -, -, +)	(-, +, +, -)	(-, -, -, -)
偶	$\sigma_0(1, 2, 3, 4)$	1, 2, 3, 4	1, -2, -3, 4	-1, 2, 3, -4	-1, -2, -3, -4
置	$\sigma_1(2, 1, 4, 3)$	2, 1, 4, 3	2, -1, -4, 3	-2, 1, 4, -3	-2, -1, -4, -3
換	$\sigma_2(3, 4, 1, 2)$	3, 4, 1, 2	3, -4, -1, 2	-3, 4, 1, -2	-3, -4, -1, -2
	$\sigma_3(4, 3, 2, 1)$	4, 3, 2, 1	4, -3, -2, 1	-4, 3, 2, -1	-4, -3, -2, -1
奇	$\sigma_4(1, 3, 2, 4)$	1, 3, 2, 4	1, -3, -2, 4	-1, 3, 2, -4	-1, -3, -2, -4
置	$\sigma_5(4, 2, 3, 1)$	4, 2, 3, 1	4, -2, -3, 1	-4, 2, 3, -1	-4, -2, -3, -1
換	$\sigma_6(2, 4, 1, 3)$	2, 4, 1, 3	2, -4, -1, 3	-2, 4, 1, -3	-2, -4, -1, -3
	$\sigma_7(3, 1, 4, 2)$	3, 1, 4, 2	3, -1, -4, 2	-3, 1, 4, -2	-3, -1, -4, -2

表7 対称置換・符号反転群 G の対称回転対による表現 (左剰余類)

	伝角	$C_0 = H_8$	左剰余類 C_1	左剰余類 C2	左剰余類 C3
θ	ϕ	$R_1(\theta)R_2(\phi)$	$\rho_1 R_1(\theta) R_2(\phi)$	$\sigma_4 R_1(\theta) R_2(\phi)$	$\sigma_4 \rho_1 R_1(\theta) R_2(\phi)$
	0	$\sigma_0 \rho_0$	$\sigma_0 \rho_1$	$\sigma_4 \rho_0$	$\sigma_4 \rho_1$
0	$\frac{\pi}{2}$	$\sigma_2 \rho_1$	$\sigma_2 \rho_3$	$\sigma_7 \rho_1$	$\sigma_7 \rho_3$
	$-\frac{\pi}{2}$	$\sigma_2 \rho_2$	$\sigma_2 \rho_0$	$\sigma_7 \rho_2$	$\sigma_7 \rho_0$
	π	$\sigma_0 \rho_3$	$\sigma_0 \rho_2$	$\sigma_4 \rho_3$	$\sigma_4 \rho_2$
_	0	$\sigma_1 \rho_1$	$\sigma_1 \rho_3$	$\sigma_6 \rho_1$	$\sigma_6 \rho_3$
$\frac{\pi}{2}$	$\frac{\pi}{2}$	$\sigma_3 \rho_3$	$\sigma_3 \rho_2$	$\sigma_5 \rho_3$	$\sigma_5 \rho_2$
	$-\frac{\pi}{2}$	$\sigma_3 \rho_0$	$\sigma_3 \rho_1$	$\sigma_5 \rho_0$	$\sigma_5 \rho_1$
	π	$\sigma_1 \rho_2$	$\sigma_1 \rho_0$	$\sigma_6 \rho_2$	$\sigma_6 \rho_0$
-	0	$\sigma_1 \rho_2$	$\sigma_1 \rho_0$	$\sigma_6 \rho_2$	$\sigma_6 \rho_0$
$-\frac{\pi}{2}$	$\frac{\pi}{2}$	$\sigma_3 \rho_0$	$\sigma_3 \rho_1$	$\sigma_5 \rho_0$	$\sigma_5 \rho_1$
	$-\frac{\pi}{2}$	$\sigma_3 \rho_3$	$\sigma_3 \rho_2$	$\sigma_5 \rho_3$	$\sigma_5 \rho_2$
	π	$\sigma_1 \rho_1$	$\sigma_1 \rho_3$	$\sigma_6 \rho_1$	$\sigma_6 \rho_3$
	0	$\sigma_0 \rho_3$	$\sigma_0 \rho_2$	$\sigma_4 \rho_3$	$\sigma_4 \rho_2$
π	$\frac{\pi}{2}$	$\sigma_2 \rho_2$	$\sigma_2 \rho_0$	$\sigma_7 \rho_2$	$\sigma_7 \rho_0$
	$-\frac{\pi}{2}$	$\sigma_2 \rho_1$	$\sigma_2 \rho_3$	$\sigma_7 \rho_1$	$\sigma_7 \rho_3$
	π	$\sigma_0 \rho_0$	$\sigma_0 \rho_1$	$\sigma_4 \rho_0$	$\sigma_4 \rho_1$

表8 対称置換・符号反転群 G の対称回転対による表現 (右剰余類)

	运角	$C_0 = H_8$	右剰余類 C_1	右剰余類 C_2	右剰余類 C_3
θ	ϕ	$R_1(\theta)R_2(\phi)$	$R_1(\theta)R_2(\phi)\rho_1$	$R_1(\theta)R_2(\phi)\sigma_4$	$R_1(\theta)R_2(\phi)\sigma_4\rho_1$
	0	$\sigma_0 \rho_0$	$\sigma_0 \rho_1$	$\sigma_4 \rho_0$	$\sigma_4 \rho_1$
0	$\frac{\pi}{2}$	$\sigma_2 \rho_1$	$\sigma_2 \rho_0$	$\sigma_6 \rho_1$	$\sigma_6 \rho_0$
	$-\frac{\pi}{2}$	$\sigma_2 \rho_2$	$\sigma_2 \rho_3$	$\sigma_6 \rho_2$	$\sigma_6 \rho_3$
	π	$\sigma_0 \rho_3$	$\sigma_0 \rho_2$	$\sigma_4 \rho_3$	$\sigma_4 \rho_2$
_	0	$\sigma_1 \rho_1$	$\sigma_1 \rho_0$	$\sigma_7 \rho_1$	$\sigma_7 \rho_0$
$\frac{\pi}{2}$	$\frac{\pi}{2}$	$\sigma_3 \rho_3$	$\sigma_3 \rho_2$	$\sigma_5 \rho_3$	$\sigma_5 \rho_2$
	$-\frac{\pi}{2}$	$\sigma_3 \rho_0$	$\sigma_3 \rho_1$	$\sigma_5 \rho_0$	$\sigma_5 \rho_1$
	π	$\sigma_1 \rho_2$	$\sigma_1 \rho_3$	$\sigma_7 \rho_2$	$\sigma_7 \rho_3$
_	0	$\sigma_1 \rho_2$	$\sigma_1 \rho_3$	$\sigma_7 \rho_2$	$\sigma_7 \rho_3$
$-\frac{\pi}{2}$	$\frac{\pi}{2}$	$\sigma_3 \rho_0$	$\sigma_3 \rho_1$	$\sigma_5 \rho_0$	$\sigma_5 \rho_1$
	$-\frac{\pi}{2}$	$\sigma_3 \rho_3$	$\sigma_3 \rho_2$	$\sigma_5 \rho_3$	$\sigma_5 \rho_2$
	π	$\sigma_1 \rho_1$	$\sigma_1 \rho_0$	$\sigma_7 \rho_1$	$\sigma_7 \rho_0$
	0	$\sigma_0 \rho_3$	$\sigma_0 \rho_2$	$\sigma_4 \rho_3$	$\sigma_4 \rho_2$
π	$\frac{\pi}{2}$	$\sigma_2 \rho_2$	$\sigma_2 \rho_3$	$\sigma_6 \rho_2$	$\sigma_6 \rho_3$
	$-\frac{\pi}{2}$	$\sigma_2 \rho_1$	$\sigma_2 \rho_0$	$\sigma_6 \rho_1$	$\sigma_6 \rho_0$
	π	$\sigma_0 \rho_0$	$\sigma_0 \rho_1$	$\sigma_4 \rho_0$	$\sigma_4 \rho_1$

2.7.1 基本回転モデル $|(H_8 = C_0)|$

基準となる回転モデルであり,連続な回転パラメータを用いた $E_4 R_1(\theta) R_2(\phi)$ で表される.

2.7.2 基本回転モデル II (*C*₁)

剰余類 C_1 に対応する基本回転モデルには様々なバリエー ションが存在するが,例えば $\rho_1 \in C_1$ の左剰余類を用いると, $E_4 \rho_1 R_1(\theta) R_2(\phi)$ になる.

2.7.3 基本回転モデル III (*C*₂)

剰余類 C_2 に対応する基本回転モデルは,例えば $\sigma_4 \in C_2$ の左剰余類を用いると, $E_4 \sigma_4 R_1(\theta) R_2(\phi)$ となる.

2.7.4 基本回転モデル N (C₃)

剰余類 C_3 に対応する基本回転モデルは, $\sigma_4 \rho_1 \in C_3$ の左 剰余類を用いると, $E_4 \sigma_4 \rho_1 R_1(\theta) R_2(\phi)$ により表される.

なお,表8の右剰余類を用いることにより,基本回転モデルⅡ~IVを表現することもできる.

ここで,基本回転モデルの Iと II は,特殊直交群 SO(4)

の対称な部分群であり,基本回転モデルの I~IV は,直交群 O(4)の対称な部分群に相当する [14].

2.8 基本回転モデルの等価変換

基本回転モデルの構成要素である $R_1(\theta)$, $R_2(\phi)$, ρ_1 , ρ_2 , σ_4 は, E_4 に関する右基本変形に属するが, これらについて 図 1 に示す等価変換規則が成立する.

この規則を次々に適用することより,基本回転モデルのI~ IV はすべて, *E*₄ に関する左基本変形のみで表すことが可能 となる.

3 4 次元一般化 LOT の回転モデル

本章では,4次元一般化LOTの回転モデルの構成法について述べる.

3.1 4次元 LOT(4×8)の構成法

前章では,基本対称行列 *E*₄ の 4 つの列について,右基本 変形に相当する 4 種類の操作を加えることにより,①対称性,

図1 基本対称行列 E₄ における等価変換規則

②直交性,③ノルム1の3条件を満たすすべての正規直交基 底が生成できることを示した.

上記の基底に対し同様の操作を半ブロック,すなわち2列 分シフトさせて適用することにより,直交基底の長さが2ブ ロックの8列に拡張され,上記3条件を満たすLOT(4×8) のすべての基底が生成される[13].前節で示した第1ステー ジにおける4種類の操作(I~IV)のそれぞれについて,第 2ステージ(I~IV)の回転操作を加えるため,回転モデルは (I-I)~(IV-IV)の16種類となる.図2(a)にモデル(I-I), 図2(b)に(III-III)の例を示す.ここでは右剰余類による表 現を用いているが,左剰余類で表すこともできる.

図 2 LOT(4×8) の回転モデル (I–I) および (III–III)

3.2 ステージ間の等価変換規則

回転操作の $R_1 \ge R_2$ の積が可換となる性質を用いて,例 えば図 2(a) 第 2 ステージの $R_{1-2}(\theta_2)$ を第 1 ステージに移動 し, $R_{1-1}(\theta_1)$ に吸収させることができる.このとき,それら の回転の向きが逆になるため, $R_{1-1}(\theta_1 - \theta_2)$ で表され,そ の角度を新たに θ_1 と定義することにより,パラメータの θ_2 を省略することができる.一方の図 2(b)の場合,各ステージ のクロス部に相当する σ_4 を乗り越えて, R_1 や R_2 の位置を 移動させることができる.例えば,第2ステージの $R_{1-2}(\theta_2)$ は σ_4 との位置を交換すると, R_2 に等価な操作となり,第1 ステージの $R_{2-1}(\phi_1)$ に吸収される.これより, θ_2 は冗長な パラメータであることが分かる.前章で示したように,第1 ステージの操作は,すべて左基本変形で表すことができるの で,LOT(4×8)の最小のパラメータは,最終的に第2ステー ジの ϕ_2 と左基本変形の δ と ω の計3つになる[13].

このようにステージ間には冗長な操作が存在し,不要な回転パラメータを整理・統合することができる.このとき,以下に示す等価変換規則が成立する.

$$R_1(\theta)\rho_1 = \rho_1 R_1(-\theta) \tag{32}$$

$$R_2(\theta)\rho_1 = \rho_1 R_2(-\theta) \tag{33}$$

$$R_1(\theta)\sigma_4 = \sigma_4 R_2(\theta) \tag{34}$$

$$R_2(\theta)\sigma_4 = \sigma_4 R_1(\theta) \tag{35}$$

これらを図示すると,図3のようになる.

3.3 符号化ゲインに関する等価変換規則

LOT をはじめとする直交変換の符号化効率を評価する尺度 として,符号化ゲインが広く用いられている.その定義から 明らかなように,直交変換の基底の置換や±の符号反転,鏡 映等の操作を行っても,符号化ゲインの値は変わらない[13].

図 1 に示した基本対称行列 *E*₄ に対する等価変換規則と, 式 (32)~(35) に示したステージ間の等価変換規則を統合する

図3 ステージ間の等価変換規則

ことにより,符号化ゲインの最大値を不変とする等価変換規 則を導くことができる.

例えば,第2ステージの ρ_1 を第1ステージに移動させる と, ρ_2 に等価となり,最終的に左基本変形に集約することが 可能となる.同時に,第1ステージの操作はすべて左基本変 形に吸収されるので,回転モデルのIとIIでは,その符号化 ゲインの最大値が等しくなることが分かる.この関係は,回 転モデルのIIIとIVについても成立し,以下の等価変換規則 が導かれる.

$$\mathbf{I} \Leftrightarrow \mathbf{I} \tag{36}$$

$$III \Leftrightarrow IV \tag{37}$$

3.4 LOT 回転モデル (4×8) の分類

前節で示したように,LOT(4×8)の回転モデルは全部で 16 種類あるが,符号化ゲインに関する等価変換規則(32)~ (35)から,実質的に2つのグループに分類されることが分か る.符号化ゲインが最大となるパラメータの探索は,基本的 にこのグループを代表する2種類の回転モデルに対して行え ばよい.

実際に,第1ステージがIのすべての (4×8) モデルについ て,符号化ゲインが最大となる回転パラメータの最適解をシ ミュレーションにより求めた.自己相関係数 $\rho = 0.95$ とした ときの値を表 9 に示す.これより,第2ステージがIとIIの 8 種のモデルについては①7.960(dB),III と IV の 8 種のモデ ルについては②7.782(dB)の2つのグル プに分類され,第 1 ステージの操作には依存しないことを確認した.なお,第1 ステージがII,III,IV の場合, L_e , L_o の回転角 δ , ω の値が 反転することがあるが,符号化ゲインや R_{2-2} の回転角 θ_2 の値は変化しない.

$ \overline{\mathbf{x}} $ 9 一 $\overline{\mathbf{n}} $ $\mathbf{LOI} $ $(4 \times 8) $ の $ \overline{\mathbf{n}} $ <u>週 </u> $ \mathbf{m} $ $(2 $

構成	最適	パラメ-	符号化ゲインの最大値	
第2ステージ	R_{2-2}	L_e	L_o	(第 1 ステージ I のとき)
Ι	α_1	α_2	$lpha_3$	$7.960(\mathrm{dB})$
П	$-\alpha_1$	$-\alpha_2$	$-\alpha_3$	
Ш	β_1	β_2	β_3	7.782(dB)
IV	$-\beta_1$	$-\beta_2$	$-\beta_3$	
$\alpha_1 = 0.0$	$54\pi, \alpha_2$	= 0.196	$\delta\pi, \alpha_3 =$	$= -0.202\pi$

 $\beta_1 = 0.181\pi, \ \beta_2 = 0.071\pi, \ \beta_3 = 0.132\pi$

3.5 一般化 LOT 回転モデル (4×12) の構成法

図 4 に示すように,LOT(4×8)の回転モデルに,第3ス テージ(I~IV)の回転等の操作を追加することにより,基底 長が8から12に拡張され,一般化LOT(4×12)のすべての 基底を構成することができる.

その組み合せは (I-I-I) ~ (IV-IV-IV) の 64 種類となる が,図4はその中の(III-III-III)を表している.ここでは 右剰余類による表現を用いている.なお,従来の回転モデル [13] では,第2ステージ以降がII,III, IV のモデルについては 検討されていなかった.

図 4 一般化 LOT(4×12) の回転モデル (III-III-III)

 3.6 一般化 LOT(4×12) における符号化ゲインの等価変換 規則

図 4 の一般化 LOT 回転モデル (Ⅲ−Ⅲ−Ⅲ) は,以下の手 順により, (I−Ⅲ−I) の形に等価変換することができる.

- 1. 第3ステージのクロス部 $(\sigma_4) \rightarrow$ 第2ステージ
- 2. 第2ステージの $R_{2-2} \rightarrow$ 第3ステージ
- 3. 第1ステージのクロス部 $(\sigma_4) \rightarrow$ 第2ステージ
- 4. 第2ステージの $R_{1-2} \rightarrow$ 第1ステージ
- 5. 第3ステージの $R_{2-3} \rightarrow$ 第2ステージ

これらの操作の過程を,図5に示す.ここで,図5(a)の第 2 ステージの R_{1-2} は第1ステージの R_{2-1} に,第3ステー ジの R_{1-3} は第2ステージの R_{2-2} に統合されるので,最終 的に第2ステージは R_{2-2} ,第3ステージは R_{2-3} のみとな る.また,図5(c)第3ステージの R_{1-3} は R_{2-2} に統合され る.同様に,一般化LOTの回転モデル(I-III-III)は,次の ように(III-III-I)の形に等価変換することができる.

1. 第 3 ステージのクロス部 $(\sigma_4) \rightarrow$ 第 2 ステージ 2. 第 2 ステージの $R_{2-2} \rightarrow$ 第 3 ステージ 3. 第 2 ステージのクロス部 $(\sigma_4) \rightarrow$ 第 1 ステージ

- 4. 第 2 ステージの $R_{1-2} \rightarrow$ 第 1 ステージ
- 5. 第 3 ステージの $R_{2-3} \rightarrow$ 第 2 ステージ

これらの操作の過程を図 6 に示す.なお,図 5(a)(c)の第 3 ステージの下位に互換の σ_4 を追加すると,それぞれ図 6 の (c)と(a)になることが分かる.

これより,符号化ゲインに関する以下の等価変換規則が導かれる.

$$\Pi - \Pi - \Pi \Leftrightarrow I - \Pi - I \tag{38}$$

$$\mathbf{I} - \mathbf{II} - \mathbf{II} \Leftrightarrow \mathbf{II} - \mathbf{II} - \mathbf{I} \tag{39}$$

なお, (4×12) の一般化 LOT では,最終的に $R_{2-2}(\phi_2)$, $R_{2-3}(\phi_3)$, $L_e(\delta)$, $L_o(\omega)$ の4つのパラメータに統合される. 次に一般化 LOT(4×12) について,符号化ゲインが最大とな る回転パラメータの最適解をシミュレーションにより求めた. その結果を表 10 に示す.なお,第1ステージは I としてい る.これより,符号化ゲインは, (1)8.214(dB), (2)8.067(dB),

③8.014(dB)の3つのグル プに分類されることを確認した.
 第1ステージは任意のため,第2ステージがⅢ あるいは IV
 のすべてのモデルは,(32)~(35)の規則により1つのグループ(3)に統合されている.

表 10 一般化 LOT(4×12) の最適解(3 グループ)

ステ	ージ		最適パラ.	メータ		符号化ゲインの最大値
第 2	第3	R_{2-2}	R_{2-3}	L_e	L_o	(第 1 ステージ I のとき)
I	I	α ₁	α_2	α_3	α_4	
	П	$-\alpha_1$	$-\alpha_2$	$-\alpha_3$	$-\alpha_4$	8.214(dB)
П	I	$-\alpha_1$	α_2	$-\alpha_3$	$-\alpha_4$	$\alpha_1 = 0.074\pi, \ \alpha_1 = -0.121\pi$
	П	α ₁	$-\alpha_2$	α_3	α_4	$\alpha_3 = 0.060\pi, \ \alpha_4 = -0.074\pi$
I	Ш	β_1	β_2	β_3	β_4	
	IV	$-\beta_1$	$-\beta_2$	$-\beta_3$	$-\beta_4$	8.067(dB)
П	Ш	$-\beta_1$	β_2	$-\beta_3$	$-\beta_4$	$\beta_1 = 0.067\pi, \beta_2 = -0.031\pi$
	IV	β_1	$-\overline{\beta}_2$	β_3	β_4	$\beta_3 = 0.156\pi, \beta_4 = 0.128\pi$
	I	γ_1	γ_2	γ_3	γ_4	
Ш	П	$-\gamma_1$	$-\gamma_2$	$-\gamma_3$	$-\gamma_4$	
	Ш	$-\gamma_2$	$-\gamma_1$	γ_3	$-\gamma_4$	8.014(dB)
	IV	γ_2	γ_1	$-\gamma_3$	γ_4	
	I	$-\gamma_1$	γ_2	$-\gamma_3$	$-\gamma_4$	$\gamma_1 = 0.016\pi, \ \gamma_2 = -0.151\pi$
IV	П	γ_1	$-\gamma_2$	γ_3	γ_4	$\gamma_3 = 0.089\pi, \gamma_4 = 0.034\pi$
	ш	γ_2	$-\gamma_1$	$-\gamma_3$	γ_4	
	IV	$-\gamma_2$	γ_1	γ_3	$-\gamma_4$	

3.7 一般化 LOT 回転モデル (4×16)の構成法とその分類
 図 7 に示すように, (4×12)の回転モデルに,第4ステージ(I~IV)の回転操作を追加することにより,基底長が12から16に拡張され,一般化LOT(4×16)のすべての基底を構成することができる.

その組み合せは (I-I-I-I) ~ (IV-IV-IV-IV) の 256 種類 となるが,図は (III-III-I-III) を表している.ここでも右剰 余類による表現を用いている.

図 7 一般化 LOT(4×16) の回転モデル (III-III-I-III)

 (4×16) の一般化 LOT について,符号化ゲインが最 大となるパラメータを求めると,表 11 のようになる. ここで第 1 ステージは任意なので,基本の I としてい る.等価変換の操作により,回転パラメータは,最終的 に $R_{2-2}(\theta_2), R_{2-3}(\theta_3), R_{2-4}(\theta_4), L_e(\delta), L_o(\omega)$ の5つのパラ メータに統合される.

これまで, (4×8) , (4×12) , (4×16) の一般化 LOT の回 転モデルについて, 符号化ゲインの最大値が等しいグループ に分類する手法を整理してきたが,ステージ数を 5 以上にし た場合についても, $(32) \sim (35)$ の等価変換規則を適用するこ とにより,ステージ数と同数のグループに分類されることが 導かれる.なお,回転パラメータの最適解はその中の1つの 解について,置換や符号反転を施したものとなる.

図 5 4 次元一般化 LOT における符号化ゲインの等価変換規則 (Ⅲ–Ⅲ–Ⅲ ⇔ I–Ⅲ–I)

図 6 4 次元一般化 LOT における符号化ゲインの等価変換規則 (I-Ⅲ-Ⅲ ⇔ Ⅲ-Ⅲ-I)

4 6次元正規直交基底の構成法

4.1 正規直交基底の基本対称行列 E₆

6次元 LOT では,以下のように (6 × 6)の基本対称行列 *E*₆を定義する.

$$E_{6} = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & 0 & 0 & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0 \\ \frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & -\frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & 0 & 0 & -\frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 \end{pmatrix}$$
(40)

ここで,1~3行は偶対称成分,4~6行は奇対称成分に対応 する.次に,*E*₆の対称性と直交性,ノルム1の3条件を保存 する有限な列の置換操作について検討する.

4.2 *E*₆ の列に関する対称置換群 *G*_σ

6 つの元からなる置換群の位数は 6! = 720 となるが,その すべてが対称性を保存するとは限らない.そこで 3 列と 4 列 の間にある対称軸について, E_6 の対称性を保存する置換群 を,以下に示す 6 次元の対称式から決定する.

 $f_6 = x_1 \cdot x_6 + x_2 \cdot x_5 + x_3 \cdot x_4 \tag{41}$

この対称置換群 G_{σ} の位数は表 12 に示すように 48 となり, 偶置換と奇置換は同数の 24 となる.なお,偶置換の対称互換 対は $\sigma_1, \dots, \sigma_6$ の 6 種類, 奇置換の互換は $\sigma_a, \sigma_b, \sigma_c$ の 3 種類になる.特に対称互換対は,次節以降で求める対称回転対に対応するものであり,各ステージの回転パラメータも同数の 6 個となる.

4.3 *E*₆の列に関する符号反転群 *G*_ρ

4 次元の場合と同様に, E_6 の列に関する符号反転群 G_ρ を 求めると,その位数は $2^3 = 8$ となる.その群表を表 13 に示 す.なお, G_σ は非可換となるが,この G_ρ は可換である. 4.4 E_6 の対称置換・符号反転群 G_6

対称置換群 G_{σ} と,符号反転群 G_{ρ} との直積 G_6 を定義する.この位数は 384(48×8) となるが,4次元の場合と同様にして,回転群に拡張可能な正規部分群を抽出することができる.この正規部分群 H の位数は 96 となり, G_6 のすべての元はこの H を法とする 4 つの剰余類 $C_0 \sim C_3$ に類別される.これらを表 14 に示す.なお,符号の $(\pm),(\mp)$ は複号同順とする.

次に,この有限な正規部分群 *H* を,連続群の中の位相群に 位置付けられる 6 次の特殊直交群 *SO*(6)の対称な部分群に 拡張する.

正規部分群の H のすべての元は,以下に示す対称回転対 $R_{1a}(\theta)$, $R_{1b}(\theta)$, $R_{2a}(\theta)$, $R_{2b}(\theta)$, $R_3(\theta)$, $R_4(\theta)$ の積の形で 表現することができる.

表 14 対称置換・符号反転群 G₆の元とその類別(複号同順)

$C_0 (= H)$	C_1	C_2	C_3
$\pm 1, \pm 2, 3, 4, \pm 5, \pm 6$	$\pm 1, \pm 2, -3, -4, \pm 5, \pm 6$	$\pm 1, \pm 2, 4, 3, \pm 5, \pm 6$	$\pm 1, \pm 2, -4, -3, \pm 5, \pm 6$
$\pm 1, \mp 2, -3, -4, \mp 5, \pm 6$	$\pm 1, \mp 2, 3, 4, \mp 5, \pm 6$	$\pm 1, \mp 2, -4, -3, \mp 5, \pm 6$	$\pm 1, \mp 2, 4, 3, \mp 5, \pm 6$
$\pm 1, \mp 3, 2, 5, \mp 4, \pm 6$	$\pm 1, \mp 3, -2, -5, \mp 4, \pm 6$	$\pm 1, \mp 3, 5, 2, \mp 4, \pm 6$	$\pm 1, \mp 3, -5, -2, \mp 4, \pm 6$
$\pm 1, \pm 3, -2, -5, \pm 4, \pm 6$	$\pm 1, \pm 3, 2, 5, \pm 4, \pm 6$	$\pm 1, \pm 3, -5, -2, \pm 4, \pm 6$	$\pm 1, \pm 3, 5, 2, \pm 4, \pm 6$
$\pm 1, \mp 4, 5, 2, \mp 3, \pm 6$	$\pm 1, \mp 4, -5, -2, \mp 3, \pm 6$	$\pm 1, \mp 4, 2, 5, \mp 3, \pm 6$	$\pm 1, \mp 4, -2, -5, \mp 3, \pm 6$
$\pm 1, \pm 4, -5, -2, \pm 3, \pm 6$	$\pm 1, \pm 4, 5, 2, \pm 3, \pm 6$	$\pm 1, \pm 4, -2, -5, \pm 3, \pm 6$	$\pm 1, \pm 4, 2, 5, \pm 3, \pm 6$
$\pm 1, \pm 5, 4, 3, \pm 2, \pm 6$	$\pm 1, \pm 5, -4, -3, \pm 2, \pm 6$	$\pm 1, \pm 5, 3, 4, \pm 2, \pm 6$	$\pm 1, \pm 5, -3, -4, \pm 2, \pm 6$
$\pm 1, \mp 5, -4, -3, \mp 2, \pm 6$	$\pm 1, \mp 5, 4, 3, \mp 2, \pm 6$	$\pm 1, \mp 5, -3, -4, \mp 2, \pm 6$	$\pm 1, \mp 5, 3, 4, \mp 2, \pm 6$
$\pm 2, \mp 1, 3, 4, \mp 6, \pm 5$	$\pm 2, \mp 1, -3, -4, \mp 6, \pm 5$	$\pm 2, \mp 1, 4, 3, \mp 6, \pm 5$	$\pm 2, \mp 1, -4, -3, \mp 6, \pm 5$
$\pm 2, \pm 1, -3, -4, \pm 6, \pm 5$	$\pm 2, \pm 1, 3, 4, \pm 6, \pm 5$	$\pm 2, \pm 1, -4, -3, \pm 6, \pm 5$	$\pm 2, \pm 1, 4, 3, \pm 6, \pm 5$
$\pm 2, \pm 3, 1, 6, \pm 4, \pm 5$	$\pm 2, \pm 3, -1, -6, \pm 4, \pm 5$	$\pm 2, \pm 3, 6, 1, \pm 4, \pm 5$	$\pm 2, \pm 3, -6, -1, \pm 4, \pm 5$
$\pm 2, \mp 3, -1, -6, \mp 4, \pm 5$	$\pm 2, \mp 3, 1, 6, \mp 4, \pm 5$	$\pm 2, \mp 3, -6, -1, \mp 4, \pm 5$	$\pm 2, \mp 3, 6, 1, \mp 4, \pm 5$
$\pm 2, \pm 4, 6, 1, \pm 3, \pm 5$	$\pm 2, \pm 4, -6, -1, \pm 3, \pm 5$	$\pm 2, \pm 4, 1, 6, \pm 3, \pm 5$	$\pm 2, \pm 4, -1, -6, \pm 3, \pm 5$
$\pm 2, \mp 4, -6, -1, \mp 3, \pm 5$	$\pm 2, \mp 4, 6, 1, \mp 3, \pm 5$	$\pm 2, \mp 4, -1, -6, \mp 3, \pm 5$	$\pm 2, \mp 4, 1, 6, \mp 3, \pm 5$
$\pm 2, \mp 6, 4, 3, \mp 1, \pm 5$	$\pm 2, \mp 6, -4, -3, \mp 1, \pm 5$	$\pm 2, \mp 6, 3, 4, \mp 1, \pm 5$	$\pm 2, \mp 6, -3, -4, \mp 1, \pm 5$
$\pm 2, \pm 6, -4, -3, \pm 1, \pm 5$	$\pm 2, \pm 6, 4, 3, \pm 1, \pm 5$	$\pm 2, \pm 6, -3, -4, \pm 1, \pm 5$	$\pm 2, \pm 6, 3, 4, \pm 1, \pm 5$
$\pm 3, \pm 1, 2, 5, \pm 6, \pm 4$	$\pm 3, \pm 1, -2, -5, \pm 6, \pm 4$	$\pm 3, \pm 1, 5, 2, \pm 6, \pm 4$	$\pm 3, \pm 1, -5, -2, \pm 6, \pm 4$
$\pm 3, \mp 1, -2, -5, \mp 6, \pm 4$	$\pm 3, \mp 1, 2, 5, \mp 6, \pm 4$	$\pm 3, \mp 1, -5, -2, \mp 6, \pm 4$	$\pm 3, \mp 1, 5, 2, \mp 6, \pm 4$
$\pm 3, \mp 2, 1, 6, \mp 5, \pm 4$	$\pm 3, \mp 2, -1, -6, \mp 5, \pm 4$	$\pm 3, \mp 2, 6, 1, \mp 5, \pm 4$	$\pm 3, \mp 2, -6, -1, \mp 5, \pm 4$
$\pm 3, \pm 2, -1, -6, \pm 5, \pm 4$	$\pm 3, \pm 2, 1, 6, \pm 5, \pm 4$	$\pm 3, \pm 2, -6, -1, \pm 5, \pm 4$	$\pm 3, \pm 2, 6, 1, \pm 5, \pm 4$
$\pm 3, \mp 5, 6, 1, \mp 2, \pm 4$	$\pm 3, \mp 5, -6, -1, \mp 2, \pm 4$	$\pm 3, \mp 5, 1, 6, \mp 2, \pm 4$	$\pm 3, \mp 5, -1, -6, \mp 2, \pm 4$
$\pm 3, \pm 5, -6, -1, \pm 2, \pm 4$	$\pm 3, \pm 5, 6, 1, \pm 2, \pm 4$	$\pm 3, \pm 5, -1, -6, \pm 2, \pm 4$	$\pm 3, \pm 5, 1, 6, \pm 2, \pm 4$
$\pm 3, \pm 6, 5, 2, \pm 1, \pm 4$	$\pm 3, \pm 6, -5, -2, \pm 1, \pm 4$	$\pm 3, \pm 6, 2, 5, \pm 1, \pm 4$	$\pm 3, \pm 6, -2, -5, \pm 1, \pm 4$
$\pm 3, \mp 6, -5, -2, \mp 1, \pm 4$	$\pm 3, \mp 6, 5, 2, \mp 1, \pm 4$	$\pm 3, \mp 6, -2, -5, \mp 1, \pm 4$	$\pm 3, \mp 6, 2, 5, \mp 1, \pm 4$
$\pm 4, \pm 1, 5, 2, \pm 6, \pm 3$	$\pm 4, \pm 1, -5, -2, \pm 6, \pm 3$	$\pm 4, \pm 1, 2, 5, \pm 6, \pm 3$	$\pm 4, \pm 1, -2, -5, \pm 6, \pm 3$
$\pm 4, \mp 1, -5, -2, \mp 6, \pm 3$	$\pm 4, \mp 1, 5, 2, \mp 6, \pm 3$	$\pm 4, \mp 1, -2, -5, \mp 6, \pm 3$	$\pm 4, \mp 1, 2, 5, \mp 6, \pm 3$
$\pm 4, \mp 2, 6, 1, \mp 5, \pm 3$	$\pm 4, \mp 2, -6, -1, \mp 5, \pm 3$	$\pm 4, \mp 2, 1, 6, \mp 5, \pm 3$	$\pm 4, \mp 2, -1, -6, \mp 5, \pm 3$
$\pm 4, \pm 2, -6, -1, \pm 5, \pm 3$	$\pm 4, \pm 2, 6, 1, \pm 5, \pm 3$	$\pm 4, \pm 2, -1, -6, \pm 5, \pm 3$	$\pm 4, \pm 2, 1, 6, \pm 5, \pm 3$
$\pm 4, \mp 5, 1, 6, \mp 2, \pm 3$	$\pm 4, \mp 5, -1, -6, \mp 2, \pm 3$	$\pm 4, \mp 5, 6, 1, \mp 2, \pm 3$	$\pm 4, \mp 5, -6, -1, \mp 2, \pm 3$
$\pm 4, \pm 5, -1, -6, \pm 2, \pm 3$	$\pm 4, \pm 5, 1, 6, \pm 2, \pm 3$	$\pm 4, \pm 5, -6, -1, \pm 2, \pm 3$	$\pm 4, \pm 5, 6, 1, \pm 2, \pm 3$
$\pm 4, \pm 6, 2, 5, \pm 1, \pm 3$	$\pm 4, \pm 6, -2, -5, \pm 1, \pm 3$	$\pm 4, \pm 6, 5, 2, \pm 1, \pm 3$	$\pm 4, \pm 6, -5, -2, \pm 1, \pm 3$
$\pm 4, \mp 6, -2, -5, \mp 1, \pm 3$	$\pm 4, \mp 6, 2, 5, \mp 1, \pm 3$	$\pm 4, \mp 6, -5, -2, \mp 1, \pm 3$	$\pm 4, \mp 6, 5, 2, \mp 1, \pm 3$
$\pm 5, \mp 1, 4, 3, \mp 6, \pm 2$	$\pm 5, \mp 1, -4, -3, \mp 6, \pm 2$	$\pm 5, \mp 1, 3, 4, \mp 6, \pm 2$	$\pm 5, \mp 1, -3, -4, \mp 6, \pm 2$
$\pm 5, \pm 1, -4, -3, \pm 6, \pm 2$	$\pm 5, \pm 1, 4, 3, \pm 6, \pm 2$	$\pm 5, \pm 1, -3, -4, \pm 6, \pm 2$	$\pm 5, \pm 1, 3, 4, \pm 6, \pm 2$
$\pm 5, \pm 3, 6, 1, \pm 4, \pm 2$	$\pm 5, \pm 3, -6, -1, \pm 4, \pm 2$	$\pm 5, \pm 3, 1, 6, \pm 4, \pm 2$	$\pm 5, \pm 3, -1, -6, \pm 4, \pm 2$
$\pm 5, \mp 3, -6, -1, \mp 4, \pm 2$	$\pm 5, \mp 3, 6, 1, \mp 4, \pm 2$	$\pm 5, \mp 3, -1, -6, \mp 4, \pm 2$	$\pm 5, \mp 3, 1, 6, \mp 4, \pm 2$
$\pm 5, \pm 4, 1, 6, \pm 3, \pm 2$	$\pm 5, \pm 4, -1, -6, \pm 3, \pm 2$	$\pm 5, \pm 4, 6, 1, \pm 3, \pm 2$	$\pm 5, \pm 4, -6, -1, \pm 3, \pm 2$
$\pm 5, \mp 4, -1, -6, \mp 3, \pm 2$	$\pm 5, \mp 4, 1, 6, \mp 3, \pm 2$	$\pm 5, \mp 4, -6, -1, \mp 3, \pm 2$	$\pm 5, \mp 4, 6, 1, \mp 3, \pm 2$
$\pm 5, \mp 6, 3, 4, \mp 1, \pm 2$	$\pm 5, \mp 6, -3, -4, \mp 1, \pm 2$	$\pm 5, \mp 6, 4, 3, \mp 1, \pm 2$	$\pm 5, \mp 6, -4, -3, \mp 1, \pm 2$
$\pm 5, \pm 6, -3, -4, \pm 1, \pm 2$	$\pm 5, \pm 6, 3, 4, \pm 1, \pm 2$	$\pm 5, \pm 6, -4, -3, \pm 1, \pm 2$	$\pm 5, \pm 6, 4, 3, \pm 1, \pm 2$
$\pm 6, \pm 2, 4, 3, \pm 5, \pm 1$	$\pm 6, \pm 2, -4, -3, \pm 5, \pm 1$	$\pm 6, \pm 2, 3, 4, \pm 5, \pm 1$	$\pm 6, \pm 2, -3, -4, \pm 5, \pm 1$
$\pm 6, \mp 2, -4, -3, \mp 5, \pm 1$	$\pm 6, \mp 2, 4, 3, \mp 5, \pm 1$	$\pm 6, \mp 2, -3, -4, \mp 5, \pm 1$	$\pm 6, \mp 2, 3, 4, \mp 5, \pm 1$
$\pm 6, \mp 3, 5, 2, \mp 4, \pm 1$	$\pm 6, \mp 3, -5, -2, \mp 4, \pm 1$	$\pm 6, \mp 3, 2, 5, \mp 4, \pm 1$	$\pm 6, \mp 3, -2, -5, \mp 4, \pm 1$
$\pm 6, \pm 3, -5, -2, \pm 4, \pm 1$	$\pm 6, \pm 3, 5, 2, \pm 4, \pm 1$	$\pm 6, \pm 3, -2, -5, \pm 4, \pm 1$	$\pm 6, \pm 3, 2, 5, \pm 4, \pm 1$
$\pm 6, \mp 4, 2, 5, \mp 3, \pm 1$	$\pm 6, \mp 4, -2, -5, \mp 3, \pm 1$	$\pm 6, \mp 4, 5, 2, \mp 3, \pm 1$	$\pm 6, \mp 4, -5, -2, \mp 3, \pm 1$
$\pm 6, \pm 4, -2, -5, \pm 3, \pm 1$	$\pm 6, \pm 4, 2, 5, \pm 3, \pm 1$	$\pm 6, \pm 4, -5, -2, \pm 3, \pm 1$	$\pm 6, \pm 4, 5, 2, \pm 3, \pm 1$
$\pm 6, \pm 5, 3, 4, \pm 2, \pm 1$	$\pm 6, \pm 5, -3, -4, \pm 2, \pm 1$	$\pm 6, \pm 5, 4, 3, \pm 2, \pm 1$	$\pm 6, \pm 5, -4, -3, \pm 2, \pm 1$
$\pm 6, \mp 5, -3, -4, \mp 2, \pm 1$	$\pm 6, \mp 5, 3, 4, \mp 2, \pm 1$	$\pm 6, \mp 5, -4, -3, \mp 2, \pm 1$	$\pm 6, \mp 5, 4, 3, \mp 2, \pm 1$

$$R_{1a}(\theta) = \begin{pmatrix} \cos\theta & -\sin\theta & 0 & 0 & 0 & 0\\ \sin\theta & \cos\theta & 0 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0 & \cos\theta & \sin\theta\\ 0 & 0 & 0 & 0 & -\sin\theta & \cos\theta \end{pmatrix}$$
(42)
$$R_{1b}(\theta) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0\\ 0 & \cos\theta & -\sin\theta & 0 & 0 & 0\\ 0 & \sin\theta & \cos\theta & 0 & 0 & 0\\ 0 & 0 & 0 & \cos\theta & \sin\theta & 0 \\ 0 & 0 & 0 & \cos\theta & \sin\theta & 0 \end{pmatrix}$$
(43)

$$\begin{pmatrix} 0 & 0 & 0 & \cos\theta & \sin\theta & 0 \\ 0 & 0 & 0 & -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$R_{2a}(\theta) = \begin{pmatrix} \cos\theta & 0 & -\sin\theta & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0 & 0\\ \sin\theta & 0 & \cos\theta & 0 & 0 & 0\\ 0 & 0 & 0 & \cos\theta & 0 & \sin\theta\\ 0 & 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & -\sin\theta & 0 & \cos\theta \end{pmatrix}$$
(44)

$$R_{2b}(\theta) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & \cos\theta & 0 & -\sin\theta & 0 & 0 \\ 0 & 0 & \cos\theta & 0 & \sin\theta & 0 \\ 0 & \sin\theta & 0 & \cos\theta & 0 & 0 \\ 0 & 0 & -\sin\theta & 0 & \cos\theta & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$
(45)

$$R_{3}(\theta) = \begin{pmatrix} \cos\theta & 0 & 0 & -\sin\theta & 0 & 0\\ 0 & 1 & 0 & 0 & 0 & 0\\ 0 & 0 & \cos\theta & 0 & 0 & \sin\theta\\ \sin\theta & 0 & 0 & \cos\theta & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & 0\\ 0 & 0 & -\sin\theta & 0 & 0 & \cos\theta \end{pmatrix}$$
(46)

$$R_4(\theta) = \begin{pmatrix} \cos\theta & 0 & 0 & 0 & -\sin\theta & 0\\ 0 & \cos\theta & 0 & 0 & 0 & \sin\theta\\ 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 & 0 & 0\\ \sin\theta & 0 & 0 & 0 & \cos\theta & 0\\ 0 & -\sin\theta & 0 & 0 & 0 & \cos\theta \end{pmatrix}$$
(47)

4.5 対称回転対を用いた基本回転モデル

対称回転対 $R_{1a}(\theta_1)$, $R_{1b}(\theta_2)$, $R_{2a}(\theta_3)$, $R_{2b}(\theta_4)$, $R_3(\theta_5)$, $R_4(\theta_6)$ の回転パラメータ $\theta_1 \sim \theta_6$ を連続量とみなすことによ り,4つの剰余類 $C_0 \sim C_3$ に対応する 4 つの基本回転モデル I ~ IV を定義する.

4.5.1 基本回転モデル I (*C*₀ = *H*)

基準となる回転モデルであり,連続な回転パラメータを用い,以下のように表される.

 $E_6 R_{1a}(\theta_1) R_{1b}(\theta_2) R_{2a}(\theta_3) R_{2b}(\theta_4) R_3(\theta_5) R_4(\theta_6)$

表 11 一般化 LOT(4×16) の最適解(4 グループ)

	ステージ			最	符号化ゲイン最大値			
第 2	第3	第4	R_{2-2}	R_{2-3}	R_{2-4}	L_e	Lo	(第 1 ステージ I)
	I	Ι	α1	<u>α</u> 2	α3	α_A	α5	
I		п	$-\alpha_1$	$-\alpha_2$	$-\alpha_2$	$-\alpha_A$	$-\alpha_5$	8.359(dB)
	П	I	$-\alpha_1$	$-\alpha_2$	α3	$-\alpha_A$	$-\alpha_5$	(-)
		п	α ₁	α2	$-\alpha_3$	α_A	α ₅	$\alpha_1 = -0.104\pi$
	I	I	$-\alpha_1$	α <u>2</u>	α ₂	$-\alpha_A$	$-\alpha_5$	$\alpha_{2}^{1} = 0.129\pi$
п		П	α ₁	$-\alpha_2$	$-\alpha_3$	α_A	α ₅	$\alpha_3^2 = 0.163\pi$
	П	Ι	α1	$-\alpha_2$	α3	α_4	α ₅	$\alpha_4 = -0.183\pi$
		п	$-\alpha_1$	α ₂	$-\alpha_3$	$-\alpha_4$	$-\alpha_5$	$\alpha_5 = 0.186\pi$
	T	ш	<u>ß1</u>	ße	ße	B4	ßr	
T		IV	$-\beta_1$	- 62	- 62	$-\beta_4$	- Br	8.223(dB)
-	Π	m	$-\beta_1$	$-\beta_2$	 	$-\beta_4$	$-\beta r$	0.220(022)
		IV	β_1	82	$-\beta_2$	BA	BE	$\beta_1 = -0.134\pi$
	I	ш	$-\beta_1$	β_2	β_2	$-\beta_A$	$-\beta_5$	$\beta_{2}^{1} = 0.103\pi$
п		IV	β_1	$-\tilde{\beta}_2$	$-\beta_2$	β_A	βs	$\beta_3^2 = 0.325\pi$
	П	Ш	β_1	$-\beta_2$	β_3	β_A	β_5	$\beta_4 = 0.160\pi$
		IV	$-\beta_1$	β_2	$-\beta_3$	$-\beta_4$	$-\beta_5$	$\beta_5 = 0.040\pi$
	Ш	I	~1	~ 0	~ 0	~ 4	~~	
T		π	-21	- 20	-20	-24	-~-~	
-	IV	T	$-\gamma_{1}$	- 22	22	$-\gamma_{4}$	- 25	
		п	γ ₁	γ ₂	- 22	γ <u>4</u>	γ ₅	
	Ш	I	$-\gamma_1$	$\frac{\gamma_2}{\gamma_2}$	γ ₃	$-\gamma_A$	$-\gamma_5$	
п		п	γ_1	$-\gamma_2$	$-\gamma_3$	γ_A	25	
	IV	Ι	γ_1	$-\gamma_2$	γ_3	γ_4	25	
		П	$-\gamma_1$	γ_2	$-\gamma_3$	$-\gamma_A$	$-\gamma_5$	1
	I	Ш	γ_3	$-\gamma_1$	$-\gamma_2$	γ_4	$-\gamma_5$	
		IV	$-\gamma_3$	γ_1	γ_2	$-\gamma_4$	γ_5	8.220(dB)
	П	ш	$-\gamma_3$	γ_1	$-\gamma_2$	$-\gamma_4$	γ_5	
ш		IV	γ_3	$-\gamma_1$	γ_2	γ_4	$-\gamma_5$	
	ш	ш	γ_1	$-\gamma_3$	$-\gamma_2$	γ_4	γ_5	
		IV	$-\gamma_1$	γ_3	γ_2	$-\gamma_4$	$-\gamma_5$	
	IV	Ш	$-\gamma_1$	γ_3	$-\gamma_2$	$-\gamma_4$	$-\gamma_5$	
		IV	γ_1	$-\gamma_3$	γ_2	γ_4	γ_5	$\gamma_1 = -0.057\pi$
	1	ш	$-\gamma_3$	$-\gamma_1$	$-\gamma_2$	$-\gamma_4$	γ_5	$\gamma_2 = -0.379\pi$
		10	γ_3	γ_1	γ_2	γ_4	$-\gamma_5$	$\gamma_3 = 0.104\pi$
11/	ш	III IV	γ_3	γ_1	$-\gamma_2$	γ_4	$-\gamma_5$	$\gamma_4 = -0.179\pi$
11	m	III	- 73		172		75	75 = 0.110%
		IV	~ 1	13	12	14	75	
	IV	m	~1	73	-20	74	75	
		IV	-21	- 22	22	-24	- 25	
			1	13	12	- 14	75	
	ш	III IV	-02	-03	<u>°1</u>	<u>°4</u>	-05	
1	TV.	10	02 5	03	-01	-04	05	
	11		02 8-	03	01 8.	-04	05	
	m	m	-02 80	- 03	-01 -01	- 84	- 05	
Π		IV	- 80	δ ₂	$-\delta_1$	δ_4	$-\delta \epsilon$	
1	IV	ш	$-\delta_2$	- δ 2	δ_1	$\frac{\delta_4}{\delta_4}$	$-\delta_{E}$	
1		IV	82	$-\delta_3$	$-\delta_1$	$-\delta_A$	δ5	
	I	Ι	δ_1	δ_2	δ_3	δ_A	δ_5	8.277(dB)
		п	$-\delta_1$	$-\tilde{\delta}_2$	$-\delta_3$	$-\delta_4$	$-\delta_5$	
1	п	Ι	$-\delta_1$	$-\delta_2$	δ_3	$-\delta_4$	$-\delta_5$	1
ш		П	δ_1	δ_2	$-\delta_3$	δ_4	δ_5	
1	ш	Ι	$-\delta_2$	$-\delta_1$	δ_3	δ_4	$-\delta_5$	
1		П	δ_2	δ_1	$-\delta_3$	$-\delta_4$	δ_5	
1	IV	Ι	δ_2	δ_1	δ_3	$-\delta_4$	δ_5	$\delta_1 = 0.255\pi$
		Ш	$-\delta_2$	$-\delta_1$	$-\delta_3$	δ_4	$-\delta_5$	$\delta_2 = 0.080\pi$
1	I	I	$-\delta_1$	δ_2	δ_3	$-\delta_4$	$-\delta_5$	$\delta_3 = 0.214\pi$
		Ш	δ ₁	$-\delta_2$	-03	δ ₄	05	$\delta_4 = -0.141\pi$
The second secon	ш	1	01	-02	°3	04	05	$o_5 = -0.132\pi$
1V		Ш	-01	<u>°2</u>	-03	-04	-05	
	ш	1	<u>°2</u>	-01	03	- 04	05	
	IV	П	-02 8-	<u>01</u>	-03	<u>04</u>	- 05	
	11	<u>і</u> П	-02	01 8.	<i>0</i> 3	<u>04</u>	- 05	
L		ш	02	-01	-03	-04	05	

4.5.2 基本回転モデル II (*C*₁)

剰余類 C_1 に対応する基本回転モデルには様々なバリエー ションが存在するが, 例えば $\rho_1 \in C_1$ の左剰余類を用いると, 次のようになる.

 $E_6\rho_1 R_{1a}(\theta_1) R_{1b}(\theta_2) R_{2a}(\theta_3) R_{2b}(\theta_4) R_3(\theta_5) R_4(\theta_6)$

4.5.3 基本回転モデル Ⅲ (C₂)

剰余類 C_2 に対応する基本回転モデルは,例えば $\sigma_a \in C_2$ の左剰余類を用いると,次のようになる.

 $E_6\sigma_a R_{1a}(\theta_1) R_{1b}(\theta_2) R_{2a}(\theta_3) R_{2b}(\theta_4) R_3(\theta_5) R_4(\theta_6)$

4.5.4 基本回転モデル Ⅳ (C₃)

剰余類 C_3 に対応する基本回転モデルは, $\sigma_a \rho_1 \in C_3$ の左 剰余類を用いると,以下のように表される.

$$E_6 \sigma_a \rho_1 R_{1a}(\theta_1) R_{1b}(\theta_2) R_{2a}(\theta_3) R_{2b}(\theta_4) R_3(\theta_5) R_4(\theta_6)$$

表 12 E_6 の列に関する対称置換群 G_σ

偶置換								奇言	置換				
1	2	3	4	5	6	恒等置換 σ_0	1	2	4	3	5	6	σ_a
1	3	2	5	4	6	σ_1	1	5	3	4	2	6	互換 σ_b
3	2	1	6	5	4	σ_2	6	2	3	4	5	1	σ_c
2	1	3	4	6	5	対称 σ_3	1	3	5	2	4	6	
1	4	5	2	3	6	互換対 σ_4	1	4	2	5	3	6	
4	2	6	1	5	3	σ_5	2	1	4	3	6	5	
5	6	3	4	1	2	σ_6	2	3	6	1	4	5	
2	3	1	6	4	5		2	4	1	6	3	5	
3	1	2	5	6	4		2	6	3	4	1	5	
1	5	4	3	2	6		3	1	5	2	6	4	
2	4	6	1	3	5		3	2	6	1	5	4	
2	6	4	3	1	5		3	5	1	6	2	4	
3	5	6	1	2	4		3	6	2	5	1	4	
3	6	5	2	1	4		4	1	2	5	6	3	
4	1	5	2	6	3		4	2	1	6	5	3	
4	5	1	6	2	3		4	5	6	1	2	3	
4	6	2	5	1	3		4	6	5	2	1	3	
5	1	4	3	6	2		5	1	3	4	6	2	
5	3	6	1	4	2		5	3	1	6	4	2	
5	4	1	6	3	2		5	4	6	1	3	2	
6	2	4	3	5	1		5	6	4	3	1	2	
6	3	5	2	4	1		6	3	2	5	4	1	
6	4	2	5	3	1		6	4	5	2	3	1	
6	5	3	4	2	1		6	5	4	3	2	1	

表 13 E_6 の列に関する符号反転群 G_ρ の群表

右 \ 左	ρ_0	ρ_1	ρ_2	ρ_3	ρ_4	ρ_5	ρ6	ρ7
ρ_0 (+, +, +, +, +, +)	ρ_0	ρ_1	ρ_2	ρ_3	ρ_4	ρ_5	ρ6	Ρ7
$\rho_1 (+, +, -, -, +, +)$	ρ_1	ρ_0	ρ_3	ρ_2	ρ_5	ρ_4	Ρ7	ρ6
$\rho_2 (+, -, +, +, -, +)$	ρ_2	ρ_3	ρ_0	ρ_1	ρ_6	ρ_7	ρ_4	ρ_5
$\rho_3 (+, -, -, -, -, +)$	ρ_3	ρ_2	ρ_1	ρ_0	ρ_7	ρ_6	ρ_5	ρ_4
$\rho_4 (-, +, +, +, +, -)$	ρ_4	ρ_5	ρ_6	ρ_7	ρ_0	ρ_1	ρ_2	ρ_3
$\rho_5 (-, +, -, -, +, -)$	ρ_5	ρ_4	ρ_7	ρ_6	ρ_1	ρ_0	ρ_3	ρ_2
$\rho_6(-,-,+,+,-,-)$	ρ6	ρ7	ρ_4	ρ_5	ρ_2	ρ_3	ρ	ρ_1
$\rho_7(-, -, -, -, -, -)$	ρ7	ρ_6	ρ_5	ρ_{Δ}	ρ_3	ρ_2	ρ1	ρο

なお右剰余類を用いて,基本回転モデルⅡ~Ⅳを表現する こともできる.

ここで,基本回転モデルのIとIIは,特殊直交群 SO(6) の対称な部分群であり,基本回転モデルのI~IVは,直交群 O(6)の対称な部分群に相当する[15].なお4次元の場合と 異なり,これらの対称回転対の積は非可換となり,積の順序 を入れ替えると回転パラメータの値は保存されない.しかし, 適切な値を選ぶことにより,基底の形状を変えることなく, 対称回転対の積の順序を交換することができる[13].

5 6 次元一般化 LOT の回転モデル

本章では,6次元一般化LOTの回転モデルの構成法につい て述べる.

5.1 6次元 LOT(6×12)の構成法

前章では,基本対称行列 *E*₆ の 6 つの列について,右基本 変形に相当する4種類の操作を加えることにより,①対称性, ②直交性,③ノルム1の3条件を満たすすべての正規直交基 底が生成できることを示した.

上記の基底に対し同様の操作を3列分シフトさせて適用す ることにより,直交基底の長さが2ブロックの12列に拡張さ れ,上記3条件を満たすLOT(6×12)のすべての基底が生成 される[13].前節で示した第1ステージにおける4種類の操 作I~IVのそれぞれについて,第2ステージI~IVの回転操 作を加えるため,回転モデルは(I–I)~(IV–IV)の16種類と なる.図8にモデル (IV-IV)の例を示す.ここでは右剰余類 による表現を用いているが,左剰余類で表すこともできる.

図 8 LOT(6×12) の回転モデル (IV-IV)

5.2 LOT(6 × 12) における符号化ゲインの等価変換規則
 4 次元の場合と同様に, ρ₁ は上のステージに移行できるの
 で,符号化ゲインに関する以下の等価変換規則が成立する.

$$I \Leftrightarrow II$$
 (48)

$$\mathbf{III} \Leftrightarrow \mathbf{IV} \tag{49}$$

5.3 6次元一般化 LOT(6×18)の構成法

LOT(6×12)の回転モデルに,第3ステージ(I~IV)の回 転等の操作を追加することにより,基底長が12から18に拡 張され,一般化LOT(6×18)のすべての基底を構成すること ができる.図9にその回転モデル(Ⅲ-I-III)の例を示す.な お,第3ステージの $R_{1a-3},R_{1b-3},R_{2a-3}$ は,第2ステージ に移動し, $R_{1a-2},R_{1b-2},R_{2a-2}$ に吸収させることができる. 更に,第2ステージの $R_{1a-2},R_{1b-2},R_{2a-2}$ は,それぞれ第1 ステージの $R_{1b-1},R_{2b-1},R_{3-1}$ に等価な回転操作となり,最 終的に左基本変形に集約させることが可能となる.これより, 最少の回転パラメータは,第3ステージの R_{2b-3},R_{3-3},R_{4-3} の3個,第2ステージの R_{2b-2},R_{3-2},R_{4-2} の3個,左基本 変形 L_e の3個, L_o の3個の計12個となる[13].

5.4 一般化 LOT(6×18) における符号化ゲインの等価変換
 規則

図 9 の回転モデル (III-I-III) について,第1,第3ステー ジのクロス部 (σ_a)を第2ステージに移動すると,図 10 のよ

図 9 一般化 LOT(6×18) の回転モデル (III-I-III)

うに等価変換される.すなわち第2ステージの上下に,1ブ ロック(6列)分シフトした置換に相当する操作が残り,4次 元の場合のようにモデルの(I-I-I)と等価にはならない.

図 10 6 次元一般化 LOT における等価変換規則

ここで回転モデル (III-I-III) の右基本変形の部分に,対称回転対の回転角として $0,\pm\frac{\pi}{2},\pi$ の値を与えたとき,全体で 1248 組のパターンが現れ,これらはモデル (I-I-I) のパター

ンに完全に一致することをシミュレーションにより確認した. これより,モデルの (I-I-I) と (III-I-III)の間に,符号化ゲインに関する等価変換が成立することが示された.なお,これらのモデルにおいて,第3ステージの下位に互換の σ_a を追加することにより,モデルの (I-I-III) と (III-I-I)が等価になることが導かれる.

これより,6次元における符号化ゲインの等価変換規則は 以下のようになる.

$$\mathbf{I} - \mathbf{I} - \mathbf{I} \iff \mathbf{III} - \mathbf{I} - \mathbf{III} \tag{50}$$

$$\mathbf{I} - \mathbf{I} - \mathbf{III} \iff \mathbf{III} - \mathbf{I} - \mathbf{I} \tag{51}$$

次に $(6 \times 12) \sim (6 \times 24)$ の一般化 LOT について,符号化ゲ インの最大値とそのパラメータをシミュレーションにより求 めた.その結果を表 15 に示す.ここで第1ステージは任意な ので,基本の I としている.符号化ゲインの最大値が (6×12) は 2 つ, (6×18) は 3 つ, (6×24) は 4 つのグループに分類 され,それらの分類が等価変換規則 (50),(51) に従っているこ とが分かる.

表 15 6 次元一般化 LOT(6×12)~(6×24) の最適解とその分類

基底の		符号化ゲイン		
サイズ	第 2	第3	第 4	最大値 (dB)
(6×12)	I (II)			8.854
	III (IV)			8.825
	I (II)	I (II)		9.019
(6×18)		III (IV)		
	III (IV)	I (II)		8.888
		III (IV)		9.005
	I (II)	I (II)	I (II)	
		III (IV)	I (II)	9.123
	III (IV)	I (II)	III (IV)	
(6×24)	I (II)	I (II)	III (IV)	
		III (IV)	III (IV)	9.107
		I (II)	I (II)	
	III (IV)	III (IV)	I (II)	9.062
			III (IV)	9.035

6 8 次元以上の一般化 LOT の回転モデル

6.1 一般化 LOT の回転モデル

8次の対称式 f₈は以下のようになる.

$$f_8 = x_1 \ x_8 + x_2 \ x_7 + x_3 \ x_6 + x_4 \ x_5 \tag{52}$$

このとき表 16 に示すように,対称置換群 G_{σ} の位数は 384, 符号反転群 G_{ρ} の位数は 16 であり,その直積となる対称置 換・符号反転群 Gの位数は 6144 になる.回転群へと拡張可 能な G の正規部分群 H の位数は 1536 で, H を法とする剰 余類の数は 4 になる.同様にして 2n 次元の一般化 LOT に おける G や H の位数が求められるが, いずれも剰余類の数 は 4 で, ステージ毎のモデル数も 4 となる.

表 16 一般化 LOT の群の位数とその類別

	次元						
	4	6	8	2n			
対称置換群 G_σ	8	48	384	$n!2^n$			
符号反転群 $G_ ho$	4	8	16	2^n			
対称置換・符号反転群 G	32	384	6144	$n! 2^{2n}$			
G の正規部分群 H	8	96	1536	$n!2^{2(n-1)}$			
列の回転パラメータ数	2	6	12	n(n-1)			
GのHを法とする剰余類			4				

6.2 符号化ゲインに関する等価変換規則

ー般化 LOT の回転モデルにおいて,表 7,8 のように対称 回転対の角度を $0,\pm\frac{\pi}{2},\pi$ に設定したとき,基本対称行列 E の 列の並びに関するパターン数を整理すると,表 17 のようにな る.なお,当然のことながら第 1 ステージは H の位数に等し くなる.

表17 角度指定時における回転モデルのパターン数

回転モデル		次 元								
	4	6	8	2n						
第1ステージ	8	96	1536	$n!2^{2(n-1)}$						
第2ステージ	16	384	12288	$n!2^{3(n-1)}$						
第3ステージ	32	1248	61440	$n! 2^{2(n-1)} \sum_{i=1}^{n} 3^{i-1}$						

8次元の第3ステージでは,回転パラメータの組み合せによ リ,基本対称行列 E_8 の8列の並びは61440通りのパターン に変換される.ここでモデルの(I-III-I)と(III-III-III)に ついて,それらのパターンをシミュレーションにより比較し たところ,完全に一致することを確認した.これより,これ らの符号化ゲインの最大値は等しくなり,4次元と同じ等価 変換規則 $(32) \sim (35)$ が成立することが分かる.

符号化ゲインに関する等価変換規則を表 18 に示す. 4(8) 次 元と6次元の規則を比較すると, I と III を交換した形となっ ている.なお,10次元の一般化 LOT については組み合せの 数が多く,その検証は今後の課題となるが,6次元に一致する ものと予想される.

表 18 符号化ゲインに関するステージ間の等価変換規則

次元	等価変換規則						
4n	Ι	\Leftrightarrow	Π	І-Ш-І	\Leftrightarrow	$\Pi - \Pi - \Pi$	
(4・8 次元)				І-Ш-Ш	\Leftrightarrow	Ш−Ш−І	
2(2n+1)	Ш	\Leftrightarrow	IV	Ш–І–Ш	\Leftrightarrow	I–I–I	
(6 次元)				Ⅲ—I—I	\Leftrightarrow	I-I-III	

7 むすび

すべての正規直交基底が表現可能な,直線位相一般化LOT の回転モデルの構成法を示した.LOT基底の回転や置換等の 操作について,すべての組み合せを簡潔に記述するため,基 本対称行列の列に関する有限な対称置換群と符号反転群を定 義し,それらの直積 G から連続な回転群へ拡張可能な正規部 分群 H を抽出した.次に G の元を H を法とする 4 つの剰 余類に類別し,それらに対応する回転モデルを生成して,ス テージ間に存在する冗長な操作を統合する手法を提案した.

この回転モデルは1ステージ毎にバリエーションが4倍に 拡大するため,最適パラメータ探索の効率化が課題となる. そこで,符号化効率の評価尺度として広く用いられる符号化 ゲインが,LOT 基底の置換や±の符号反転,鏡映等の操作 に対し不変となる性質に着目し,4次元と6次元の回転モデ ルにおいて,その最適値が保存されるステージ間の等価変換 規則について検討した.更に,抽出した4つの規則を用いて 上記回転モデルを整理・統合することにより,ステージ数に 等しいグループに分類されることを明らかにした.これによ り,一般化LOT の設計ではステージ数に等しい代表的なモ デルについて,最少のパラメータを用いて最適化を行えばよ く,探索等の作業量を大幅に低減することが可能となる.

今後の課題は,10次元以上の一般化LOTについて符号化 ゲインの等価変換規則を検証し,本手法を奇数次元に拡張す ることである.

参考文献

- N. Ahmed, T. Natarajan and K.R. Rao, Discrete cosine transform," IEEE Trans. Comput., vol.C-23, pp.90-93, Jan. (1974).
- [2] H.S. Malver and D.H. Staelin, "The LOT: transform coding without blocking effects," IEEE Trans. Acoust., Speech Signal Process., vol.37, no.4, pp.553-559, April (1989).
- [3] H.S. Malver, "Lapped transforms for efficient transform/subband coding," IEEE Trans. Acoust., Speech Signal Process., vol.38, no.6, pp.969-978, June (1990).

- [4] M. Vetterli, "A theory of multirate filter banks," IEEE Trans. Acoust., Speech Signal Process., vol.35, no.3, pp.356-372, March (1987).
- [5] M. Vetterli and D.L. Gall, "Perfect reconstruction FIR filter banks: some properties and factorizations," IEEE Trans., Acoust., Speech Signal Process., vol.37, no.7, pp.1057-1071, July (1989).
- [6] A.K. Soman, P.P. Vaidyanathan and T.Q. Nguyen, "Linear phase paraunitary filter banks: theory,factorizations and designs," IEEE Trans., Signal Process., vol.41, no.12, pp.3480-3496, Dec. (1993).
- [7] R.L. Queiroz, T.Q. Nguyen and K.R. Rao, "The GenLOT: generalized linear-phase lapped orthogonal transform," IEEE Trans., Signal Process., vol.44, no.3, pp.497-507, March (1996).
- [8] S.C. Chan, "The generalized lapped transform (GLT) for subband coding applications," in Proc ICASSP, Detroit, MI, pp.1508-1511, (1995).
- [9] T. Nagai, C.W. Kok, M. Ikehara and T.Q. Nguyen, "Design and lattice structure of FIR paraunitary filter banks with linear phase," IEICE Trans., Fundamentals, vol.E80-A, no.4, pp.712-721, April (1997).
- [10] L. Gan and K. Ma, "A simplified lattice factorization for linear-phase perfect reconstruction filter bank," IEEE Signal Processing Letters, vol.8, no.7, pp.207-209, July (2001).
- [11] 井澤裕司、"多次元直交空間の回転・置換群を用いた直線位相 LOT の設計手法、"画像電学誌、 Vol.39, No.1, pp.23-35, Jan. (2010).
- [12] 井澤裕司、"多次元直交空間における回転モデルを用いた 直線位相 LOT の設計手法、"画像電学誌、 Vol.39, No.4, pp.454-462, July (2010).
- [13] 井澤裕司、"多次元直交空間における回転モデルを用いた 直線位相一般化 LOT の設計手法、"信学論 A、 Vol.J94-A、No.1、pp.1-17、Jan. (2011).
- [14] 王金雲, 井澤裕司, 高橋速巳, "4次元一般化 LOT の完備 な回転モデルとその類別,"平成 24 年度電子情報通信学会 信越支部大会予稿, 2D-2,p.36, Sep. (2012).
- [15] 吉川圭二, "群と表現,理工系の基礎数学 9," 岩波書店 (1996).
- [16] 山内恭彦, "回転群とその表現,"岩波書店 (1957).

井澤 裕司 : 昭 51 東大・工・産業機械卒,昭 53 同大大学 院修士課程修了,同年(株)日立製作所中央研究所入社,平 5 信州大・工・講師,平 7 同助教授,工博,画像符号化,画像信 号処理に関する研究に従事.

高橋 速已 : 平4 東大・教卒, 同年三菱倉庫(株)入社, 平8 宮崎県庁入庁, 平24 信州大学大学院修士課程修了, 画像符号 化に関する研究に従事.