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Abstract: Let S be a compact complex surface with ordinary singularities. We denote
by ΘS the sheaf of germs of holomorphic tangent vector fields on S. In this paper we shall
give a description of the cohomology H1(S, ΘS), which is called the infinitesimal locally trivial
deformation space of S, using a 2-cubic hyper-resolution of S in the sense of F. Guillén, V. Navarro
Aznar et al. ([1]). As a by-product, we shall show that the natural homomorphism H1(S, ΘS) →
H1(X, ΘX(− log DX)) is injective under some condition, where X is the (non-singular) normal
model of S, DX the inverse image of the double curve DS of S by the normalization map f : X →
S, and ΘX(− log DX) the sheaf of germs of logarithmic tangent vector fields along DX on X.
Note that the cohomology H1(X, ΘX(− log DX)) is nothing but the infinitesimal locally trivial
deformation space of a pair (X, DX).

§1. 2-cubic hyper-resolutions of compact
complex surfaces with ordinary singularities.
A 2-dimensional compact complex space S is called
a compact complex surface with ordinary singulari-
ties if it is locally isomorphic to one of the following
germs of hypersurfaces at the origin of the complex
3-space C3 at every point of S:

(i) z = 0 (simple point),
(ii) yz = 0 (ordinary double point),
(iii) xyz = 0 (ordinary triple point),
(iv) xy2 − z2 = 0 (cuspidal point),

where (x, y, z) is the coordinate on C3. These sur-
faces are attractive because every smooth complex
projective surface can be obtained as the normaliza-
tion of such a surface S in the 3-dimensional com-
plex projective space P 3(C). In fact, every smooth,
compact complex surface embedded in a complex
projective space can be projected onto such a sur-
face S in P 3(C) via generic projection. We denote
by DS the singular locus of S, and call it the dou-
ble curve of S. DS is a singular curve with triple
points. We denote by ΣtS the triple point locus
of S, and by ΣcS the cuspidal point locus of S.
Let f : X → S be the normalization. Note that
X is non-singular. We put DX := f−1(DS) and
ΣtX := f−1(ΣtS). DX is a singular curve with
nodes and ΣtX coincides with the set of nodes of
DX . Let nS : D∗

S → DS and nX : D∗
X → DX

be the normalizations, and let g : D∗
X → D∗

S be
the lifting of the map f|DX

: DX → DS . We put
Σt∗S := n−1

S (ΣtS) and Σt∗X := n−1
X (ΣtX). Then a 2-

cubic hyper-resolution of S in the sense of F. Guillén,
V. Navarro Aznar et al. ([1]) is obtained as in the
diagram (∗) below. In the diagram, νS and νX are
the composites of the normalizations and the inclu-
sion maps, and the square on the left-hand side is
the one induced from the square on the right-hand
side.

§2. Description of H1(S, ΘS) by use of a
2-cubic hyper-resolution of S. We put ΘS :=
HomOS

(Ω1
S ,OS), and call it the sheaf of germs of

holomorphic tangent vector fields on S. We call
H1(S,ΘS) the infinitesimal locally trivial deforma-
tion space of a compact complex surface S with or-
dinary singularities. This naming is due to the fact
that the parameter space of the 1st-order infinitesi-
mal locally trivial deformation of S sits in this space,
where ”locally trivial deformation” means the de-
formation which preserves local analytic singularity
types. In the following we shall describe H1(S, ΘS)
by use of the diagram (∗). We denote symbolically
the 2-cubic hyper-resolution of S in the diagram (∗)
by b. : X. → S. For each α ∈ Ob(¤+

2 ) := {α =
(α0, α1, α2) ∈ Z3 | 0 ≤ αi ≤ 1 for 0 ≤ i ≤ 2}, an ob-
ject of the augmented 2-cubic category in the sense of
F. Guillén, V. Navarro Aznar et al. ([1]), we denote
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(∗)

X111 := Σt∗X - D∗
X =: X011

-

g

-

X110 := Σt∗S - D∗
S =: X010

?

? νS

?

?

νX

ΣtX := X101
- X =: X001

- -

f

X100 := ΣtS - S =: X000,

by ΘXα the sheaf of germs of holomorphic tangent
vector fields on Xα (X0 := S for 0 := (0, 0, 0) ∈
Ob¤+

2 ), and by Θ(OS ,OXα) the sheaf of germs of
OXα

-valued derivations on S, i.e., θ ∈ Θ(OS ,OXα
)

is a C-linear map OS → bα∗OXα
with the property

θ(uv) = θ(u)v + uθ(v) for u, v ∈ OS , where bα is the
map from Xα to S in the diagram (∗) (cf. [2]). For
each α ∈ Ob(¤2) := {α ∈ Ob(¤+

2 ) | α 6= (0, 0, 0)},
we define tbα : bα∗ΘXα → Θ(OS ,OXα) (resp.
ωbα : ΘS → Θ(OS ,OXα)) by tbα(θ) := θb∗α for θ ∈
bα∗ΘXα (resp. ωbα(ϕ) := b∗αϕ for ϕ ∈ ΘS), where
b∗α : OS → bα∗OXα denotes the pull-back.

Definition 1. We define a sheaf Θ(b.) to be

Ker{⊕α∈Ob (¤+
2 )bα∗ΘXα → ⊕α∈Ob (¤2)

Θ(OS ,OXα):

(θα) → tbα(θα)− ωbα(θ0)},
and call it the sheaf of germs of holomorphic tangent
vector fields to the 2-cubic hyper-resolution b. : X. →
S.

Further, we introduce the following notation:
ΘX(− log DX): the sheaf of germs of logarithmic

tangent vector fields along DX on X, i.e., the sub-
sheaf of ΘX consisting of derivations of OX which
send I(DX), the ideal sheaf of DX in OX , into it-
self,

ΘD∗S (−Σc∗S − Σt∗S): the sheaf of germs of holo-
morphic tangent vector fields on D∗

S which vanish on
Σc∗S and Σt∗S , where Σc∗S is the inverse image of the
cuspidal point locus ΣcS of S by the normalization
map nS : D∗

S → DS ,
ΘD∗X (−Σt∗X): the sheaf of germs of holomorphic

tangent vector fields on D∗
X which vanish on Σt∗X .

(Note that Σt∗X coincides with the inverse image of
the triple point locus ΣtS of DS by the composed
map nS ◦ g : D∗

X → DS .)
Proposition 2. There exists naturally the fol-

lowing exact sequence of OS-modules:

0 → ΘS

cωf⊕dωνS−→
f∗ΘX(− log DX)⊕ νS∗ΘD∗S (−Σc∗S − Σt∗S)

dωνX−cωg−→ ν∗ΘD∗
X

(−Σt∗X) → 0,

where ν := f ◦ νX = νS ◦ g.
The proof of this proposition is a direct calcula-

tion by use of the local coordinate description of the
maps f : X → S, νS : D∗

S → DS , νX : D∗
X → X,

and g : D∗
X → D∗

S .
Corollary 3. Θ(b.) ' ΘS.
Theorem 4. If the map

H0(X, ΘX(− log DX))⊕H0(D∗
S , ΘD∗S (−Σc∗S − Σt∗S))

→H0(D∗
X ,ΘD∗

X
(−Σt∗X))

is surjective, then we have

H1(S, Θ(b.)) ' H1(S, ΘS) ' the kernel of the map

H1(X, ΘX(− log DX))⊕H1(D∗
S , ΘD∗S (−Σc∗S − Σt∗S))

→ H1(D∗
X ,ΘD∗

X
(−Σt∗X)).

Proposition 5. The map

H1(D∗
S , ΘD∗

S
(−Σc∗S−Σt∗S))→H1(D∗

X , ΘD∗
X

(−Σt∗X))

is injective.
The proof of this proposition will be completed

after a few lemmas. First, we will prove general facts
about a double covering π : C1 → C between com-
pact Riemann surfaces, or connected, compact com-
plex manifolds of dimension 1. We denote by Σc the
branch locus of the double covering π : C1 → C, and
by [Σc] the line bundle over C determined by the di-
visor Σc. Due to Wavrik’s result ([6]), there exists a
complex line bundle F over C such that;
(i) F⊗2 = [Σc], and
(ii) C1 is a submanifold of F and the bundle map

F → C realizes the double covering π : C1 → C.
Lemma 6. With the notation above, there ex-

ists an exact sequence of OC-modules

0 → OC → π∗OC1 → OC(F−1) → 0.(2.1)

This follows from the concrete description of the
transition functions of the line bundle F by use of
local coordinates.

Let π : C1 → C and Σc be the same as before,
and let Σt be a set of finite distinct points of C with
Σc ∩ Σt = ∅. We put Σt1 := π−1(Σt).

Lemma 7. With the notation above, we have
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an exact sequence of OC-modules

(2.2) 0 → ΘC(−Σc− Σt) → π∗ΘC1(−Σt1)

→ ΘC(−Σt)⊗OC(F−1) → 0.

Proof . Since π∗(π∗ΘC(−Σt)) ' ΘC(−Σt) ⊗
π∗OC1 , tensoring the sheaf ΘC(−Σt) to the exact
sequence in (2.1), we have an exact sequence of OC-
modules

(2.3) 0 → ΘC(−Σt) → π∗(π∗ΘC(−Σt))

→ ΘC(−Σt)⊗OC(F−1) → 0.

We also have the following commutative diagram of
exact sequences of OC-modules:

0 - ΘC(−Σt)
cωπ- π∗(π∗ΘC(−Σt))

6 6

0 - ΘC(−Σc− Σt) - π∗ΘC1(−Σt1)
6 6

0 0,
where ω̂π denotes the pull-back. We will show that
this diagram gives an isomorphism

π∗ΘC1(−Σt1)/ΘC(−Σc− Σt)(2.4)

' π∗(π∗ΘC(−Σt))/ΘC(−Σt).

To prove the surjectivity of the homomorphism in
(2.4), we will first show that

t̂π(ΘC1(−Σt1)π−1(p)) + ω̂π(ΘC(−Σt)p)(2.5)

= π∗ΘC(−Σt)π−1(p)

for any point p ∈ C, where t̂π denotes the map
derived from the Jacobian map of the map π. If
p 6∈ Σc, (2.5) obviously holds. Assume p ∈ Σc. We
put q := π−1(p), and let u and v be local coordi-
nates around p and q with center p and q, respec-
tively. We may assume that the map π : C1 → C

is given by v → u = v2 at q. For a local cross-
section a(v)π∗(∂/∂u) of π∗ΘC(−Σt) at q where a(v)
is a holomorphic function of v, we express a(v) as

a(v) = a(0) + va1(v)

where a1(v) is a holomorphic function of v. Then we
have

t̂π

(
1
2
a1(v)

(
∂

∂v

))
+ ω̂π

(
a(0)

(
∂

∂u

))

= (va1(v) + a(0))π∗
(

∂

∂u

)
= a(v)π∗

(
∂

∂u

)
,

which shows (2.5) holds for the point p ∈ Σc. To
prove the injectivity of the homomorphism in (2.4),

it suffices to show that, for any point p ∈ C and a lo-
cal holomorphic cross-section θ1 of π∗ΘC1(−Σt1) at
p, if t̂π(θ1,p) belongs to ω̂π(ΘC(−Σt)p), then θ1,p be-
longs to the image ΘC(−Σc−Σt)p in π∗ΘC1(−Σt1)p.
Since this is obvious if p 6∈ Σc, we assume p ∈ Σc.
We take the same local coordinates u and v around
p and q := π−1(p) as before, respectively. For a
local cross-section θ1 = a1(v)(∂/∂v) of ΘC1(−Σt1)
at q, we assume that there exists a local cross-
section θ = a(u)(∂/∂u) of ΘC(−Σt) at p such that
t̂π(θ1) = ω̂π(θ). Then

2a1(v)vπ∗
(

∂

∂v

)
= a(v2)π∗

(
∂

∂v

)

Hence a(0) = 0, that is, θ belongs to ΘC(−Σt−Σc).
This means θ1 belongs to the image of ΘC(−Σc− Σt)
in π∗ΘC1(−Σt1) at p. Now the exact sequence in
(2.2) follows from (2.3) and (2.4).

Remark 8. In the proof of Lemma 7, the
equality in (2.5) is essential. This equality tells that
the double branched covering map π : C1 → C is
locally stable in the sense of J. N. Mather.

Proof of Proposition 5. We may assume
that D∗

S is irreducible, and so it suffices to show that
the homomorphism

H1(C, ΘC(−Σc− Σt)) → H1(C1, ΘC1(−Σt1))(2.6)

derived from the exact sequence in (2.2) is injective.
For this purpose, we count the degree of the line
bundle ΘC(−Σt)⊗OC(F−1). We denote by KC and
g(C) the canonical line bundle and the genus of the
curve C, respectively. Then, since F⊗2 = OC([Σc]),
we have

deg(ΘC(−Σt)⊗OC(F−1))

= −degKC − deg F −#Σt

= −2(g(C)− 1)− 1
2
#Σc−#Σt,

where # denote the cardinal numbers of sets. Then
we have

−2(g(C)− 1)− 1
2
#Σc−#Σt < 0

with the exception of the following cases:
g(C) = 1, Σc = ∅, and Σt = ∅,(i)

g(C) = 0, Σc = ∅, and 0 ≤ #Σt ≤ 2,(ii)
g(C) = 0, #Σc = 2, and 0 ≤ #Σt ≤ 1,(iii)

g(C) = 0, #Σc = 4, and Σt = ∅.(iv)
Hence, excluding the exceptional cases listed above,
we have

(2.7) H0(C, ΘC(−Σt)⊗OC(F−1)) = 0,
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and so the homomorphism in (2.6) is injective as re-
quired. Now, checking the exceptional cases, case by
case, we conclude that the homomorphism in (2.6) is
always injective.

Corollary 9. If the map

H0(X, ΘX(− log DX))⊕H0(D∗
S , ΘD∗S (−Σc∗S − Σt∗S))

→ H0(D∗
X , ΘD∗

X
(−Σt∗X))

is surjective, then the natural map

H1(S, ΘS) → H1(X, ΘX(− log DX))

is injective.
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