Cubic Hyper-equisingular Families of Complex Projective Varieties. II

By Shoji TSUBOI
Department of Mathematics, Kagoshima University
(Communicated by Heisuke Hironaka, M. J. A., Nov. 13, 1995)

This is a continuation of our previous paper [4], which will be referred to as Part I in this note. We inherit the notation and terminology of it.

§3. Variations of mixed Hodge structure.

3.1 Theorem. Let $X \xrightarrow{a} \mathfrak{X} \xrightarrow{\pi} M$ be an n cubic ($n \geq 1$) hyper-equisingular family of complex projective varieties, parametrized by a complex manifold M. We define $R_{\boldsymbol{Z}}^{\ell}(\pi):=R^{\ell} \pi_{*} \boldsymbol{Z}_{\mathscr{}}$ (modulo torsion $\quad(0 \leq \ell \leq 2(\operatorname{dim} \mathscr{X}-\operatorname{dim} M)), R_{\boldsymbol{Q}}^{\ell}(\pi):=$ $R_{\boldsymbol{Z}}^{\ell}(\pi) \otimes_{\boldsymbol{Z}} \boldsymbol{Q}$ and $R_{\mathscr{O}}^{\ell}(\pi):=R^{\ell} \pi_{*}\left(\pi^{\cdot} \dot{O}_{M}\right) \stackrel{\mathcal{Q}}{\simeq} R^{\ell} \pi_{*}$ ($D R_{S T M}$), where $\pi^{\cdot} \mathfrak{O}_{M}$ is the topological inverse of the structure sheaf of M by the map $\pi: \mathscr{X}$ $\rightarrow M$ and $D R_{\mathscr{X} / M}^{\cdot}$ the cohomological relative de Rham complex of the family $\pi: \mathscr{X} \rightarrow M$. Then there exist a family of increasing sub-local systems \boldsymbol{W} (weight filleration) on $R_{\boldsymbol{Q}}^{\ell}(\pi)$ and a family of decreasing holomorphic subbundles \boldsymbol{F} (Hodge filteration) on $R_{\mathscr{O}}^{\ell}(\pi)$ such that
(i) there are spectral sequences

$$
\begin{aligned}
& { }_{W} E_{1}^{p, q} \simeq \bigoplus_{|\alpha|=p+1} R^{q} \pi_{\alpha *} \boldsymbol{Q}_{\mathscr{x}_{\alpha}} \Rightarrow \\
& { }_{W} E_{\infty}^{p, q}=G r_{-p}^{W}\left(R_{Q}^{p+q}(\pi)\right) \text {, } \\
& { }_{F} E_{1}^{p, q} \simeq \boldsymbol{R}^{q} \pi_{*}\left(s\left(a_{1 \cdot *} \Omega_{S T, / M}^{p}\right)[1]\right) \Rightarrow \\
& { }_{F} E_{\infty}^{p, q}=G r_{F}^{p}\left(R_{\Theta}^{p+q}(\pi)\right)
\end{aligned}
$$

with ${ }_{W} E_{2}^{p, q}={ }_{W} E_{\infty}^{p, q},{ }_{F} E_{1}^{p, q}={ }_{F} E_{\infty}^{p, q}$,
(ii) $\left.\left(R_{\boldsymbol{Z}}^{\ell}(\pi), \boldsymbol{W}[\ell], \boldsymbol{F}\right)\right\}$ defines mixed Hodge strucutre at each point $t \in M$, where $\boldsymbol{W}[\ell]$ denotes the shift of the filteration degree to the right by ℓ, i.e., $\boldsymbol{W}[\ell]_{q}:=\boldsymbol{W}_{q-\ell}$, and (iii) (the Griffiths transversality)

$$
\nabla \mathscr{F}^{p} \subset \Omega_{M}^{1} \otimes \mathscr{F}^{p-1},
$$

where ∇ denotes the Gauss-Mannin connection on $R_{\mathscr{O}}^{\ell}(\pi)$.

Outline of the proof. (i), (ii): By Theorem 2.1 and Theorem 2.2 in [4], we have an isomorphism

$$
\pi \cdot \mathscr{O}_{M} \approx D R_{\mathscr{X} / M} \approx s\left(a_{1 \cdot *} \Omega_{\mathscr{X} / M}\right)[1]
$$

in $D^{+}(\mathscr{X}, \boldsymbol{C})$, where $a_{1 . *} \Omega_{\mathscr{X} \cdot / M}^{\cdot}$ is the n-cubic object of complexes of \boldsymbol{C}-vector spaces coming from $\Omega_{\dot{X}, / M}$, and $s\left(a_{1 . *} \Omega_{\mathscr{X}, / M}\right)$ is its associated single complex (cf. Part I, [1, Exposé I,6]). By this isomorphism we have
$R_{\mathscr{O}}^{\ell}(\pi):=R^{\ell} \pi_{*}\left(\pi^{\cdot} \mathscr{O}_{M}\right) \simeq \boldsymbol{R}^{\ell} \pi_{*}\left(s\left(a_{1, *} \Omega_{\dot{X} \cdot / M}\right)[1]\right)$.

To compute the hyper-direct image $\boldsymbol{R}^{e} \pi_{*}(s$ ($a_{1 . *} \Omega_{\dot{x}, / M}^{\cdot}$) [1]), we shall use the fine resolution
 C^{∞} relative differential forms of type (r, s) on $\mathscr{X}_{\alpha}\left(\alpha \in \square_{n}\right)$. Then the natural homomorphism

$$
s\left(a_{1 \cdot *} \Omega_{\mathscr{X} . / M}^{\circ}\right)[1] \rightarrow s\left(a_{1 \cdot *} \operatorname{tot} \not A_{\mathscr{X}, / M}\right)[1]
$$

is an isomorphism in $D^{+}(\mathscr{X}, \boldsymbol{C})$, where tot $\mathscr{A}_{\mathscr{X}_{\alpha^{\prime}} M}$ is the single complex associated to the double complex $\mathscr{A}_{\mathscr{S}_{\alpha} / M}$ for each $\alpha \in \square_{n}$. Since $s\left(a_{1 . *}\right.$ tot $\left.\mathscr{A} \ddot{\mathscr{x}_{X}, M}\right)[1]$ is π_{*}-acyclic, we have

$$
R_{\mathscr{\theta}}^{\ell}(\pi) \simeq H^{\ell}\left(\pi_{*} s\left(a_{1 \cdot *} \operatorname{tot} \not \mathscr{A}_{\ddot{X} \cdot / M}\right)[1]\right) .
$$

We define an increasing filteration $\boldsymbol{W}=\left\{W_{q}\right\}$ and a decreasing one $F=\left\{F^{q}\right\}$ on the single complex $L:=\pi_{*} s\left(a_{1 \cdot *} \operatorname{tot} \mathscr{A} \cdot \ddot{9 \cdot / M}\right)$ [1] by

$$
\begin{aligned}
& W_{-q}\left(\pi_{*} s\left(a_{1 \cdot *} \operatorname{tot} \mathscr{A} \ddot{\mathscr{P} . / M}\right)[1]\right) \\
& :=\sigma_{|\alpha| \geq q+1} \pi_{*} s\left(a_{1 \alpha *} \operatorname{tot} \mathscr{A}_{\mathscr{X}_{\alpha} / M}\right) \quad(q \geq 0) \text { and } \\
& F^{p}\left(\pi_{*} s\left(a_{1 \cdot *} \operatorname{tot} \mathscr{A}_{\ddot{\theta} \cdot / M}\right)[1]\right) \\
& :=\sigma_{k \geq p} \pi_{*} s\left(a_{1 \cdot *} \operatorname{tot} \mathscr{A}_{x \cdot / M}^{k}\right)[1] \quad(p \geq 0) \text {, }
\end{aligned}
$$

where $\sigma_{|\alpha| \geq q+1} \pi_{*} s\left(a_{1 \alpha *} \operatorname{tot} \not \mathscr{A}_{\mathscr{\prime} \kappa_{\alpha} / M}\right):=\sigma_{\geq q}(L)$ if we put $L:=\pi_{*} s\left(a_{1 * *} \operatorname{tot} \mathscr{A} \ddot{\mathscr{x}, . / M}\right)[1]$. ($\sigma_{\geq q}:$ stupid filteration). Notice that the filteration W is defined over \boldsymbol{Q}. We calculate the spectral sequence associated to these filterations, abutting to $R_{\vartheta}^{\ell}(\pi)$. Since $\left(L_{t}, W, F\right)$ is a cohomological mixed Hodge complex in the sense of Deligne for any $t \in$ M (for definition see [1, (8.1.6)]), the spectral sequence $\left\{E_{r}\left(L_{t}, W\right), d_{r}\right\}$ degenerates at the E_{2}-terms and the one associated to F degenerates at the E_{1}-terms ($[2, \mathrm{p} .48$, Théorème 3.2.1 (Deligne), (vi), (v)]. The assertions (i) and (ii) follow from this.
(iii): We take a point $o \in M$ and put $X_{\alpha}:=$ $\left(\pi \cdot a_{\alpha}\right)^{-1}(o), X:=\pi^{-1}(o)$. By the definition of an n-cubic hyper-equisingular family $\mathscr{X} \xrightarrow{a \rightarrow} \mathscr{X}$ $\xrightarrow{\pi} M$, it is analytically locally trivial. Hence, schrinking M sufficiently small around o, we are allowed to assume that there is a system of Stein coverings $\quad U_{\alpha}:=\left\{U_{i}^{(\alpha)}\right\}_{i \in \Lambda_{\alpha}}$ of $X_{\alpha}\left(\alpha \in \square_{n}^{+}\right)$, which is subject to the following requirements:
(1) for each pair (α, β) of elements of $\mathrm{Ob}\left(\square_{n}^{+}\right)$with $\alpha \rightarrow \beta$ in \square_{n}^{+}, there is a map $\lambda_{\alpha \beta}: \Lambda_{\beta} \rightarrow \Lambda_{\alpha}$ such that
(a) if α, β, γ are elements of $\mathrm{Ob}\left(\square_{n}^{+}\right)$ with $\alpha \rightarrow \beta \rightarrow \gamma$ in \square_{n}^{+}, then $\lambda_{\alpha \gamma}=\lambda_{\alpha \beta}$. $\lambda_{\beta r}$, and
(b) $e_{\alpha \beta}\left(U_{i}^{(\beta)}\right) \subset U_{\lambda_{\alpha \beta}{ }^{(i)}}^{(\alpha)}$ for any $i \in \Lambda_{\beta}$, where $e_{\alpha \beta}: X_{\beta} \rightarrow X_{\alpha}$ is a holomorphic map corresponding to an arrow $\alpha \rightarrow \beta$ in \square_{n}^{+},
(2) if we define $V_{i}^{(\alpha)}:=U_{i}^{(\alpha)} \times M$ for $\alpha \in$ $\mathrm{Ob}\left(\square_{n}^{+}\right)$and $i \in \Lambda_{\alpha}$, then $V_{\alpha}:=$ $\left\{V_{i}^{(\alpha)}\right\}_{i \in \Lambda_{\alpha}}$ is a Stein covering of \mathscr{X}_{α} for every $\alpha \in \mathrm{Ob}\left(\square_{n}^{+}\right)$,
(3) $E_{\alpha \beta \mid V^{\beta}}: V_{i}^{(\beta)} \rightarrow V_{\lambda_{\alpha \beta}^{(i)}}^{(\alpha)}$ is equal to $e_{\alpha \beta \mid U_{i}^{(\beta)}}$ $\times \mathrm{id}_{M}$ for $\alpha \in \mathrm{Ob}\left(\square_{n}^{+}\right)$and $i \in \Lambda_{\alpha}$, where $E_{\alpha \beta}: \mathscr{X}_{\beta} \rightarrow \mathscr{X}_{\alpha}$ is a holomorphic map over M corresponding to an arrow $\alpha \rightarrow \beta$ in \square_{n}^{+}, and
(4) $\pi_{\alpha \mid V_{i}^{(\alpha)}}=\operatorname{Pr}_{M}: V_{i}^{(\alpha)}:=U_{i}^{(\alpha)} \times M \rightarrow M$ (projection to M), where $\pi_{\alpha}:=\pi \cdot a_{\alpha}$ and $\pi_{0}=\pi$.
We take the Cēch resolution $\mathscr{C}^{\bullet}\left(\mathscr{V}_{\alpha}, \Omega_{\mathscr{C} \alpha / M}^{\dot{C}}\right)$ of the complex $\Omega_{\mathscr{X}_{\alpha^{\prime}} M}$ with respect to the covering V_{α} for each $\alpha \in \square_{n}$. Then the natural homomorphism

$$
s\left(a_{1 \cdot *} \Omega_{\mathscr{X}, / M}\right)[1] \rightarrow s\left(a_{1, *} \operatorname{tot} \mathscr{C}^{\cdot}\left(\mathscr{V} ., \Omega_{\mathfrak{X}, / M}\right)\right)[1]
$$

is an isomorphism in $D^{+}(\mathscr{X}, \boldsymbol{C})$. Since $s\left(a_{1 \cdot *}\right.$ $\left.\operatorname{tot} \mathscr{C}^{\cdot}\left(\sqrt{V} ., \Omega_{\mathscr{X} . / M}\right)\right)$ [1] is $\pi_{*^{-} \text {-acyclic, we have }}$

$$
R_{\mathscr{O}}^{\ell}(\pi) \simeq H^{e}\left(\pi_{*} s\left(a_{1 \cdot *} \operatorname{tot}_{\mathscr{C}}\left(\mathcal{V}, \Omega_{\mathscr{X}, / M}\right)\right)[1]\right)
$$

By use of this isomorphism, following the arguments of Katz and Oda in [3], we calculate the Gauss-Mannin connection ∇ on $R_{\mathscr{O}}^{\ell}(\pi)$. From this the Griffiths transversality follows. We should mention that the analytic local triviality assumption on the family $\mathscr{X} \xrightarrow{a} \mathfrak{X} \xrightarrow{\pi} M$ is neces. sary so that this procedure can be carried out in our arguments.
§4. Infinitesimal period map. Let $\mathscr{X} \xrightarrow{a \rightarrow} \mathscr{X}$ $\xrightarrow{\pi} M$ be an n-cubic ($n \geq 1$) hyper-equisingular family of complex projective varieties, parametrized by a complex manifold M. For each $\alpha \in$ \square_{n}^{+}we denote by $\mathscr{T}_{\mathscr{S}_{\alpha} / M}$ the sheaf of germs of holomorphic tangent vector fields along fibers on $\mathscr{X}_{\alpha}\left(\mathscr{X}_{0}:=\mathscr{X}\right.$ for $\left.0:=(0, \ldots, 0) \in \square_{n}^{+}\right)$, and by $\mathscr{T}\left(\mathscr{X}_{1 M}, \mathscr{O}_{\mathscr{C}_{\alpha}}\right)$ the sheaf of germs of $\mathscr{O}_{\mathscr{X}_{\alpha}}$-valued derivations θ along fibers on \mathscr{X}, i.e., $\theta \in \mathscr{T}\left(\mathscr{X}_{/ M}\right.$, $\mathscr{O}_{\mathscr{X}_{\alpha}}$) are $\pi^{\cdot} \mathscr{O}_{M^{-}}$-linear maps $\mathscr{O}_{\mathscr{X}} \rightarrow a_{\alpha *} \mathscr{O}_{\mathscr{X}_{\alpha}}$ with the property $\theta(a b)=\theta(a) b+a \theta(b)$ for $a, b \in$ $\mathscr{O}_{\mathscr{X}}$, where $\pi^{\cdot} \mathscr{O}_{M}$ is the topological inverse of the structure sheaf of M by the map π. For each α $\in \square_{n}^{+}$we define

$$
\begin{aligned}
& t a_{\alpha}: a_{\alpha *} \mathscr{T}_{\mathscr{X}_{\alpha} / M} \rightarrow \mathscr{T}\left(\mathscr{X}_{/ M}, \mathscr{O}_{\mathscr{C}_{\alpha}}\right) \text { and } \\
& \omega a_{\alpha}: \mathscr{T}_{\mathscr{X} / M} \rightarrow \mathscr{T}\left(\mathscr{X}_{/ M}, \mathscr{O}_{\mathscr{X}_{\alpha}}\right)
\end{aligned}
$$

by

$$
\begin{aligned}
& t a_{\alpha}(\theta):=\theta a_{a}^{*} \text { for } \theta \in a_{\alpha *} \mathscr{T}_{\mathscr{T}_{\alpha} / M}, \\
& \omega a_{\alpha}(\varphi):=a_{\alpha}^{*} \varphi \text { for } \varphi \in \mathscr{T}_{\mathscr{X} / M}
\end{aligned}
$$

where $a_{\alpha}^{*}: \mathscr{O}_{\mathscr{X}} \rightarrow a_{\alpha *} \mathscr{O}_{\mathscr{X}_{\alpha}}$ denotes the pull-back. We define the sheaf of germs of holomorphic tangent vector fields along fibers $\mathscr{T}(a$.$) of an n$-cubic hyper-equisingular family $\mathscr{X} \xrightarrow{a \cdot} \mathscr{X} \xrightarrow{\pi} M$ of complex projective varieties, parametrized by a complex mani fold M, by

$$
\mathscr{T}(a .):=
$$

$\operatorname{Ker}\left\{\oplus_{\alpha \in\lceil \urcorner_{n}^{+}} a_{\alpha *} \mathscr{T}_{\mathscr{X}_{\alpha} / M} \rightarrow \oplus_{\alpha \in\lceil \rceil_{, M}} \mathscr{T}\left(\mathscr{X}_{\mid M}, \mathscr{O}_{\mathscr{X}_{\alpha}}\right):\right.$

$$
\left.\left(\theta_{\alpha}\right) \rightarrow\left(\operatorname{ta}_{\alpha}\left(\theta_{\alpha}\right)-\omega a_{\alpha}\left(\theta_{0}\right)\right)\right\} .
$$

Now we are going to define the KodairaSpencer map of a family $\mathscr{X} \xrightarrow{a} \boldsymbol{X} \xrightarrow{\pi} M$ as a map

$$
\rho: \mathscr{T}_{M} \rightarrow R^{1} \pi_{*} \mathscr{T}(a .),
$$

where \mathscr{T}_{M} denotes the sheaf of germs of holomorphic tangent vector fields on M. We take a point $o \in M$ and put

$$
X_{\alpha}:=\left(\pi \cdot a_{\alpha}\right)^{-1}(o)\left(\alpha \in \square_{n}\right), X:=\pi^{-1}(o)
$$

By the "analytic local triviality" of a family \mathscr{X}. $\xrightarrow{a} \mathscr{X} \xrightarrow{\pi} M$, shrinking M sufficiently small around o, we are allowed to assume that there is a special system of Stein coverings $U_{\alpha}:=\left\{U_{i}^{(\alpha)}\right\}_{i \in \Lambda_{\alpha}}$ of $X_{\alpha}\left(\alpha \in \square_{n}^{+}\right)$, subject to the requirements in (3.1). We take such a system of Stein coverings of $\mathscr{X} \xrightarrow{a} \mathscr{X} \xrightarrow{\pi} M$ and fix it. In the subsequence we will always calculate with respect to this coverings. For each $\alpha \in \square_{n}^{+}$we denote by $C^{p}\left(\mathscr{V}_{\alpha}, \mathscr{T}_{\mathscr{X}_{\alpha^{\prime} M}}\right)\left(\right.$ resp. $Z^{\text {p }}\left(\mathscr{V}_{\alpha}, \mathscr{T}_{\mathscr{X}_{\alpha^{\prime} M}}\right)$) the p-th Cēch cochains (resp. the p-th Cēch cocycles) with values in the sheaf $\mathscr{T}_{\mathscr{C}_{\alpha} / M}$ with respect to the Stein covering \mathscr{V}_{α}. We define a subcomplex $C^{p}(a$.$) of \oplus_{\alpha \in \prod_{n}^{+}} C^{p}\left(V_{\alpha}, \mathscr{T}_{\mathscr{T}_{\alpha} / M}\right)$ by

$$
C^{p}(a .):=
$$

(4.1) $\operatorname{Ker}\left\{\oplus_{\alpha \in \cap_{n}} C^{p}\left(V_{\alpha}, \mathscr{T}_{\mathscr{T}_{\alpha} / M}\right)\right.$

$$
\left.\xrightarrow{\oplus_{\alpha \in 1_{n}\left(t a_{\alpha}-\omega a_{\alpha}^{\prime}\right.}} \oplus_{\alpha \in \prod_{n}} C^{p}\left(\mathscr{V}_{0}, \mathscr{T}\left(\mathscr{X}_{/ M}, \mathscr{O}_{\mathscr{X}_{\alpha}}\right)\right)\right\} .
$$ Let $\left(t_{1}, \cdots, t_{m}\right)$ and $\left(x_{i}^{\left.(\alpha)^{n}\right)}, \cdots, x_{i}^{(\alpha) n_{\alpha}}\right)\left(\alpha \in \square_{n}^{+}\right.$, $i \in \Lambda_{\alpha}, n_{\alpha}:=\operatorname{dim} X_{\alpha}$ for $\alpha \in \square_{n}, n_{0}:=$ the local embedding dimension of $X_{0}=X$) be local coordinate systems on M and $U_{i}^{(\alpha)}$, respectively (for $X_{0}=X$ we take a local embedding $X \subset C^{n_{0}}$ at each point of X and consider the problem modulo $\mathscr{F}(X)$, the ideal sheaf of X in $\mathscr{O}_{C^{n_{0}}}$). Then $\left(x_{i}^{(\alpha) 1}, \cdots, x_{i}^{(\alpha) n_{\alpha}}, t_{1}, \cdots, t_{m}\right)$ constitutes a local coordinate system in $V_{i}^{(\alpha)}:=U_{i}^{(\alpha)} \times M$. We denote by

$\begin{cases}x_{i}^{(\alpha) \mu}=\varphi_{i j}^{(\alpha) \mu}\left(x_{j}^{(\alpha) 1}, \cdots, x_{j}^{(\alpha) n_{\alpha}}, t_{1}, \cdots, t_{m}\right) \\ \begin{array}{ll}t_{\xi}=t_{\xi}(1 \leq \xi \leq m) & \left(1 \leq \mu \leq n_{\alpha}\right)\end{array}\end{cases}$ the transition functions of local coordinate systems in $U_{i}^{(\alpha)} \cap U_{j}^{(\alpha)}$ for $i, j \in \Lambda_{\alpha}$ with $U_{i}^{(\alpha)} \cap$ $U_{j}^{(\alpha)} \neq \emptyset$. They satisfy the compatibility conditions:

$$
\begin{aligned}
\varphi_{i k}^{(\alpha) \mu} & \left(x_{k}^{(\alpha) 1}, \cdots, x_{k}^{(\alpha) n_{\alpha}}, t\right) \\
& =\varphi_{i j}^{(\alpha) \mu}\left(\varphi_{j k}^{(\alpha) 1}\left(x_{k}^{(\alpha) 1}, \cdots, x_{k}^{(\alpha) n_{\alpha}}, t\right), \cdots,\right. \\
& \left.\varphi_{j k}^{(\alpha) n_{\alpha}}\left(x_{k}^{(\alpha) 1}, \cdots, x_{k}^{(\alpha) n_{\alpha}}, t\right), t\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \frac{\partial \varphi_{i k}^{(\alpha) \mu}}{\partial t_{\xi}}\left(x_{k}^{(\alpha)}, t\right)= \\
& \sum_{\zeta=1}^{n_{\alpha}} \frac{\partial \varphi_{i k}^{(\alpha) u}}{\partial x_{j}^{(\alpha) \zeta}}\left(\varphi_{j k}^{(\alpha)}\left(x_{k}^{(\alpha)}, t\right), t\right) \frac{\partial \varphi_{j k}^{(\alpha) \zeta}}{\partial t_{\xi}}\left(x_{k}^{(\alpha)}, t\right)+ \\
& \\
& \frac{\partial \varphi_{i j}^{(\alpha) u}}{\partial t_{\xi}}\left(\varphi_{j k}^{(\alpha)}\left(x_{k}^{(\alpha)}, t\right), t\right)
\end{aligned}
$$

This implies that if we define

$$
\theta_{i k}^{\alpha}:=\sum_{\mu=1}^{n_{\alpha}} \sum_{\xi=1}^{m} b_{\xi}(t) \frac{\partial \varphi_{i k}^{(\alpha) \mu}}{\partial t_{\xi}}\left(x_{k}^{(\alpha)}, t\right)\left(\frac{\partial}{\partial x_{i}^{(\alpha) \mu}}\right)
$$

for $\tau=\sum_{\xi=1}^{m} b_{\xi}(t)\left(\frac{\partial}{\partial t_{\xi}}\right) \in \Gamma\left(M, \mathscr{T}_{M}\right)$, then

$$
\theta_{\alpha}:=\left\{\theta_{i k}^{\alpha}\right\}_{i, k \in \Lambda_{\alpha}} \in Z^{1}\left(\mathscr{V}_{\alpha}, \mathscr{T}_{\mathscr{C}_{\alpha} / M}\right) .
$$

On each $V_{i}^{(\beta)}\left(i \in \Lambda_{\beta}\right)$ we express the holomorphic map $E_{\alpha \beta}: \mathscr{X}_{\beta} \rightarrow \mathscr{X}_{\alpha}$ corresponding to an arrow $\alpha \rightarrow \beta$ in \square_{n} as

$$
\left\{\begin{array}{l}
x_{\lambda_{\alpha \beta}^{(\alpha) \mu}}^{(\alpha)}=e_{\alpha \beta, \mu}^{i}\left(x_{i}^{(\beta) 1}, \cdots, x_{i}^{(\beta) n_{\beta}}\right)\left(1 \leq \mu \leq n_{\alpha}\right) \\
t_{\xi}=t_{\xi}(1 \leq \xi \leq m)
\end{array}\right.
$$

They satisfy the compatibility conditions:

$$
\begin{aligned}
& \varphi_{i k}^{(\alpha) \mu}\left(e_{\alpha \beta, 1}^{k}\left(x_{k}^{(\beta)}\right) \cdots, e_{\alpha \beta, n_{\alpha}}^{k}\left(x_{k}^{(\beta)}\right), t\right) \\
& =e_{\alpha \beta, \mu}^{i}\left(\varphi_{i k}^{(\beta)}\left(x_{k}^{(\beta)}, t\right)\right) \quad\left(1 \leq \mu \leq n_{\alpha}\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \frac{\partial \varphi_{i k}^{(\alpha) \mu}}{\partial t_{\xi}}\left(e_{\alpha \beta, 1}^{k}\left(x_{k}^{(\beta)}\right), \cdots, e_{\alpha \beta, n_{\alpha}}^{k}\left(x_{k}^{(\beta)}\right), t\right) \\
& =\sum_{\zeta=1}^{n_{\beta}} \frac{\partial e_{\alpha \beta, \mu}^{i}}{\partial x_{i}^{(\beta) \zeta}}\left(\varphi_{i k}^{(\beta)}\left(x_{k}^{(\beta)}, t\right)\right) \frac{\partial \varphi_{i k}^{(\beta) \zeta}}{\partial t_{\xi}}\left(x_{k}^{(\beta)}, t\right)
\end{aligned}
$$

This means $d E_{\alpha \beta}\left(\theta_{\beta}\right)=E_{\alpha \beta}^{*}\left(\theta_{\alpha}\right)$. Hence $\left\{\theta_{\alpha}\right\}_{\alpha \in \Pi_{n}}$ $\in Z^{1}(a$.$) , where Z^{1}(a$.$) stands for 1$-cycles of complex $C^{\cdot}(a$.) defined in (4.1). It is fairly easy to check that for each $\alpha \in \square_{n} \theta_{\alpha}$ in fact defines an element of $C^{1}\left(a_{\alpha}^{-1}\left(V_{0}\right), \mathscr{T}_{\mathscr{S}_{\alpha} / M}\right)$, where $a_{\alpha}^{-1}\left(V_{0}\right):=\left\{a_{\alpha}^{-1}\left(V_{i}^{(0)}\right)\right\}_{i \in \Lambda_{0}}$, because $a_{\alpha}: \mathscr{X}_{\alpha} \rightarrow \mathscr{X}$ is a product family over each $V_{i}^{(0)} \in \mathscr{V}_{0}\left(i \in \Lambda_{0}\right)$. Hence $\left\{\theta_{\alpha}\right\}_{\alpha \in \sqcap_{n}} \in Z^{1}\left(\mathscr{V}_{0}, \mathscr{T}(a).\right)$. We define $\check{\rho}$: $\Gamma\left(M, \mathscr{T}_{M}\right) \rightarrow H^{1}(\mathscr{X}, \mathscr{T}(a)$.$) by$

$$
\check{\rho}(\tau):=\left\{\theta_{\alpha}\right\}_{\alpha \in \Gamma_{n}} \in \check{H}^{1}\left(\mathscr{V}_{0}, \mathscr{T}(a .)\right)
$$

(Céch cohomology)
$\simeq H^{1}(\mathscr{X}, \mathscr{T}(a)$.
for $\tau \in \Gamma\left(M, \mathscr{T}_{M}\right)$. We can see that the map $\check{\rho}$ thus defined is independent of the choice of a system of Stein coverings $\left\{\mathscr{V}_{\alpha}\right\}_{\alpha \in \square_{n}^{+}}$of $\mathscr{X} \xrightarrow{a} \mathscr{X}$, subject to the requirements in (3.1) as a map to $H^{1}(\mathscr{X}, \mathscr{T}(a)$.$) . Localizing the map \check{\rho}$ at each point of M, we have the map $\rho: \mathscr{T}_{M} \rightarrow$ $R^{1} \pi_{*} \mathscr{T}(a$.$) .$
4.1 Definition. We call the map ρ thus defined the Kodaira-Spencer map of an n-cubic hyper-equisingular family $\mathscr{X} \xrightarrow{a} \mathfrak{X} \xrightarrow{\pi} M$ of complex projective varieties, parametrized by a complex manifold M.
We define

$$
\operatorname{Gr}_{F}^{p}\left(\boldsymbol{R}_{\mathscr{O}_{M}}^{\ell}(\pi)\right):=F^{p}\left(R_{\mathscr{O}_{M}}^{\ell}(\pi)\right) / F^{p+1}\left(R_{\mathscr{O}_{M}}^{\ell}(\pi)\right) .
$$

Then, by Theorem 3.1, (i),

$$
\operatorname{Gr}_{F}^{b}\left(\boldsymbol{R}_{\mathscr{O}_{M}}^{\ell}(\pi)\right) \simeq \boldsymbol{R}^{\ell-p} \pi_{*}\left(s\left(a_{1 * *} \Omega_{\mathscr{O}, / M}^{p}[1]\right)\right) .
$$

By Theorem 3.1, (iii) (the Griffiths transversality), the Gauss-Mannin connection ∇ on $R_{\mathscr{O}}^{\ell}(\pi)$ induces the following map:

This map $\operatorname{Gr}_{F}^{p}(\nabla)$ is related to the KodairaSpencer map ρ as follows:
4.2 Theorem. The following diagram commutes up to $(-1)^{p+1}$:

where $\tau \cdot \operatorname{Gr}_{F}^{p}(\nabla)$ is defined to be the contraction of $\operatorname{Gr}_{F}^{p}(\nabla)(\cdot)$ by τ.

The proof of this theorem is a straightforward calculation in terms of local coordinates.

References

[1] P. Deligne: Théorie de Hodge. III. Publ. Math. IHES, 44, 6-77 (1975).
[2] F. El Zein: Introduction à la théorie de Hodge mixte. Hermann, Paris (1991).
[3] N. M. Katz and T. Oda: On the differenciation of De Rham cohomology classes with respect to parameters. J. Math. Kyoto Univ., 8, no. 2, 199213 (1968).
[4] S. Tsuboi: Cubic hyper-equisingular families of complex projective varieties. I. Proc. Japan Acad., 71A, 207-209 (1995).

