Cubic Hyper-equisingular Families of Complex Projective Varieties. II

By Shoii TSUBOI

Department of Mathematics, Kagoshima University (Communicated by Heisuke HIRONAKA, M. J. A., Nov. 13, 1995)

This is a continuation of our previous paper [4], which will be referred to as Part I in this note. We inherit the notation and terminology of it.

§3. Variations of mixed Hodge structure.

3.1 Theorem. Let $\mathscr{X} \xrightarrow{a} \mathscr{X} \xrightarrow{\pi} M$ be an ncubic $(n \ge 1)$ hyper-equisingular family of complex projective varieties, parametrized by a complex manifold M. We define $R^\ell_{\boldsymbol{Z}}(\pi)$:= $R^\ell \pi_* \boldsymbol{Z}_{\mathscr{X}}$ (modulo torsion) $(0 \le \ell \le 2(\dim \mathcal{K} - \dim M)), R_Q^{\ell}(\pi) :=$ $R^{\ell}_{\boldsymbol{Z}}(\pi) \otimes_{\boldsymbol{Z}} \boldsymbol{Q} \text{ and } R^{\ell}_{\boldsymbol{\mathcal{O}}}(\pi) := R^{\ell} \pi_{*}(\pi \cdot \mathcal{O}_{M}) \stackrel{\boldsymbol{Q}}{\simeq} R^{\ell} \pi_{*}$ $(DR_{\mathcal{K}/M})$, where $\pi \mathcal{O}_M$ is the topological inverse of the structure sheaf of M by the map $\pi:\mathscr{X}$ $\rightarrow M$ and $DR^{\cdot}_{\mathscr{X}/M}$ the cohomological relative de Rham complex of the family $\pi: \mathscr{X} \to M$. Then there exist a family of increasing sub-local systems W(weight filteration) on $R^{\ell}_{\rho}(\pi)$ and a family of decreasing holomorphic subbundles $m{F}$ (Hodge filteration) on $R^{\ell}_{\mathcal{O}}(\pi)$ such that

(i) there are spectral sequences

$${}_{W}E_{1}^{p,q} \simeq \bigoplus_{|\alpha|=p+1} R^{q} \pi_{\alpha*} Q_{\mathscr{X}_{\alpha}} \Longrightarrow$$

 ${}_{W}E_{\infty}^{p,q} = Gr_{-p}^{W}(R_{Q}^{p+q}(\pi)),$
 ${}_{F}E_{1}^{p,q} \simeq R^{q} \pi_{*}(s(a_{1}.*Q_{\mathscr{X}./M}^{p})[1]) \Longrightarrow$
 ${}_{F}E_{\infty}^{p,q} = Gr_{F}^{p}(R_{\ell}^{p+q}(\pi))$

with $_{W}E_{2}^{\rho,q} = {}_{W}E_{\infty}^{\rho,q}$, $_{F}E_{1}^{\rho,q} = {}_{F}E_{\infty}^{\rho,q}$, (ii) $(R_{Z}^{\ell}(\pi), W[\ell], F)$ defines mixed Hodge

strucutre at each point $t \in M$, where $W[\ell]$ denotes the shift of the filteration degree to the right by ℓ , i.e., $W[\ell]_q \mathrel{\mathop:}= W_{q-\ell}$, and

(iii) (the Griffiths transversality) $\nabla \mathcal{F}^{p} \subset \Omega^{1}_{u} \otimes \mathcal{F}^{p-1}$

$$V \mathscr{F}^{*} \subseteq \Omega^{*}_{M} \otimes \mathscr{F}^{*}$$

where ∇ denotes the Gauss-Mannin connection on $R^{\epsilon}_{\mathscr{O}}(\pi)$.

Outline of the proof. (i), (ii): By Theorem 2.1 and Theorem 2.2 in [4], we have an isomorphism $\overline{a} : \overline{a} : \overline{a} : \overline{a} : \overline{b} : \overline{a} : \overline{b} : \overline{$ $\pi^{\cdot} \mathcal{O}$

$$\mathcal{O}_{M} \approx DR_{\mathcal{X}/M} \approx s(a_{1} \cdot Q_{\mathcal{X}/M})[1]$$

in $D^+(\mathscr{X}, C)$, where $a_{1,*}\Omega_{\mathscr{X},M}$ is the *n*-cubic object of complexes of C-vector spaces coming from $\Omega^{\boldsymbol{\cdot}}_{\mathscr{X}./M}$, and $s(a_{1.*}\Omega^{\boldsymbol{\cdot}}_{\mathscr{X}./M})$ is its associated single complex (cf. Part I, [1, Exposé I,6]). By this isomorphism we have

$$R^{\ell}_{\mathcal{O}}(\pi) := R^{\ell} \pi_*(\pi^{\cdot} \mathcal{O}_M) \simeq R^{\ell} \pi_*(s(a_{1.*} \Omega_{\mathcal{X}/M})[1]).$$

To compute the hyper-direct image $\mathbf{R}^{e}\pi_{*}(s)$ $(a_{1*}\Omega_{\mathcal{X}/M})$ [1]), we shall use the fine resolution $\mathscr{A}^{\bullet,r}_{\mathscr{X},/M}$ of $\mathscr{Q}^{\bullet}_{\mathscr{X},/M}$, where $\mathscr{A}^{r,s}_{\mathscr{X}_{\alpha}/M}$ are the sheaves of C^{∞} relative differential forms of type (r, s) on $\mathscr{X}_{\alpha}(\alpha \in \Box_{r})$. Then the natural homomorphism

 $s(a_{1} \cdot * \Omega^{\cdot}_{\mathcal{X}./M})[1] \rightarrow s(a_{1} \cdot * \operatorname{tot} \mathscr{A}^{\cdot}_{\mathcal{X}./M})[1]$ is an isomorphism in $D^+(\mathcal{X}, C)$, where tot $\mathcal{A}_{\mathcal{X}, M}^{*}$ is the single complex associated to the double complex $\mathscr{A}_{\mathscr{X}_{\alpha}/M}^{\prime\prime}$ for each $\alpha \in \Box_n$. Since $s(a_{1,*}$ tot $\mathscr{A}_{\mathscr{X},/\mathscr{M}}^{::}$ [1] is π_* -acyclic, we have

 $R^{\ell}_{\mathcal{O}}(\pi) \simeq H^{\ell}(\pi_* s(a_{1\cdot*} \mathrm{tot} \mathcal{A}^{\boldsymbol{\cdot}}_{\mathcal{X}./M})[1]).$ We define an increasing filteration $W = \{W_a\}$ and a decreasing one $F = \{F^q\}$ on the single complex $L := \pi_* s(a_{1,*} \text{tot} \mathscr{A}_{\mathscr{X}/M})$ [1] by

$$W_{-q}(\pi_* s(a_{1\cdot*} \operatorname{tot} \mathscr{A}_{\mathscr{X}./M}^{\cdot\cdot})[1])$$

:= $\sigma_{|\alpha| \ge q+1} \pi_* s(a_{1\alpha*} \operatorname{tot} \mathscr{A}_{\mathscr{X}\alpha/M}^{\cdot\cdot}) \quad (q \ge 0) \text{ and}$
 $F^{p}(\pi_* s(a_{1\cdot*} \operatorname{tot} \mathscr{A}_{\mathscr{X}./M}^{\cdot\cdot})[1])$

 $:= \sigma_{k \ge p} \pi_* s(a_{1 \cdot *} \operatorname{tot} \mathscr{A}_{\mathscr{X}./M}^{\kappa \cdot})[1] \quad (p \ge 0),$ where $\sigma_{|\alpha| \geq q+1} \pi_* s(a_{1\alpha*} \text{tot} \mathscr{A}_{\mathscr{X}_q/M}) := \sigma_{\geq q}(L)$ if we put $L := \pi_* s(a_{1\cdot*} \text{tot} \mathscr{A}_{\mathscr{X}/M})[1]$. $(\sigma_{\geq q}: stupid$ *filteration*). Notice that the filteration W is defined over Q. We calculate the spectral sequence associated to these filterations, abutting to $R^{\ell}_{\ell i}(\pi)$. Since (L_{i}, W, F) is a cohomological mixed Hodge complex in the sense of Deligne for any $t \in$ M (for definition see [1, (8.1.6)]), the spectral sequence $\{E_r(L_t, W), d_r\}$ degenerates at the E_2 -terms and the one associated to F degenerates at the E_1 -terms ([2, p.48, Théorème 3.2.1 (Deligne), (vi), (v)]). The assertions (i) and (ii) follow from this.

(iii): We take a point $o \in M$ and put $X_{\alpha} :=$ $(\pi \cdot a_{\alpha})^{-1}(o), X := \pi^{-1}(o)$. By the definition of an *n*-cubic hyper-equisingular family $\mathscr{X} \xrightarrow{a} \mathscr{X}$ $\stackrel{\pi}{\longrightarrow} M$, it is analytically locally trivial. Hence, schrinking M sufficiently small around o, we are allowed to assume that there is a system of Stein coverings $\mathcal{U}_{\alpha} := \{U_i^{(\alpha)}\}_{i \in \Lambda_{\alpha}}$ of $X_{\alpha} (\alpha \in \square_n^+)$, which is subject to the following requirements:

(1) for each pair (α, β) of elements of $Ob(\square_n^+)$ with $\alpha \to \beta$ in \square_n^+ , there is a map $\lambda_{\alpha\beta}: \Lambda_{\beta} \rightarrow \Lambda_{\alpha}$ such that

by

- (a) if α , β , γ are elements of $Ob(\square_n^+)$ with $\alpha \to \beta \to \gamma$ in \square_n^+ , then $\lambda_{\alpha \gamma} = \lambda_{\alpha \beta} \cdot \lambda_{\beta \gamma}$, and
- (b) $e_{\alpha\beta}(U_i^{(\beta)}) \subset U_{\lambda_{\alpha\beta}(i)}^{(\alpha)}$ for any $i \in \Lambda_{\beta}$, where $e_{\alpha\beta}: X_{\beta} \to X_{\alpha}$ is a holomorphic map corresponding to an arrow $\alpha \to \beta$ in \Box_n^+ ,
- (3.1) (2) if we define $V_i^{(\alpha)} := U_i^{(\alpha)} \times M$ for $\alpha \in Ob(\Box_n^+)$ and $i \in \Lambda_{\alpha}$, then $\mathscr{V}_{\alpha} := \{V_i^{(\alpha)}\}_{i \in \Lambda_{\alpha}}$ is a Stein covering of \mathscr{X}_{α} for every $\alpha \in Ob(\Box_n^+)$, (3) $E_{\alpha\beta|V_i^{\beta}} : V_i^{(\beta)} \to V_{\lambda\alpha\beta}^{(\alpha)}$ is equal to $e_{\alpha\beta|U_i^{(\beta)}}$
 - (3) $E_{\alpha\beta|V_{\ell}^{\beta}}: V_{i}^{(\beta)} \to V_{\lambda\alpha\beta(i)}^{(\alpha\beta)}$ is equal to $e_{\alpha\beta|U_{\ell}^{(\beta)}}$ $\times \operatorname{id}_{M}$ for $\alpha \in \operatorname{Ob}(\square_{n}^{+})$ and $i \in \Lambda_{\alpha}$, where $E_{\alpha\beta}: \mathscr{X}_{\beta} \to \mathscr{X}_{\alpha}$ is a holomorphic map over M corresponding to an arrow $\alpha \to \beta$ in \square_{n}^{+} , and
 - (4) $\pi_{\alpha|V_i^{(\alpha)}} = \Pr_M : V_i^{(\alpha)} := U_i^{(\alpha)} \times M \to M$ (projection to M), where $\pi_\alpha := \pi \cdot a_\alpha$ and $\pi_0 = \pi$.

We take the Cech resolution $\mathscr{C}(\mathscr{V}_{\alpha}, \mathcal{Q}_{\mathscr{X}\alpha/M})$ of the complex $\mathcal{Q}_{\mathscr{X}\alpha/M}$ with respect to the covering \mathscr{V}_{α} for each $\alpha \in \Box_n$. Then the natural homomorphism

 $s(a_{1.*}\Omega_{\mathscr{X}./M})[1] \to s(a_{1.*}\mathrm{tot}\mathscr{C}(\mathscr{V}., \Omega_{\mathscr{X}./M}))[1]$ is an isomorphism in $D^+(\mathscr{X}, \mathbb{C})$. Since $s(a_{1.*}$ $\mathrm{tot}\mathscr{C}(\mathscr{V}., \Omega_{\mathscr{X}./M}))[1]$ is π_* -acyclic, we have

 $R^{\ell}_{\mathscr{O}}(\pi) \simeq H^{\ell}(\pi_* s(a_{1\cdot*} \mathrm{tot} \mathscr{C}^{\boldsymbol{\cdot}}(\mathscr{V}, \Omega^{\boldsymbol{\cdot}}_{\mathscr{X}./M}))[1]).$

By use of this isomorphism, following the arguments of Katz and Oda in [3], we calculate the Gauss-Mannin connection ∇ on $R^{\ell}_{\mathcal{O}}(\pi)$. From this the Griffiths transversality follows. We should mention that the analytic local triviality assumption on the family $\mathscr{X} \xrightarrow{a} \mathscr{X} \xrightarrow{\pi} M$ is necessary so that this procedure can be carried out in our arguments.

§4. Infinitesimal period map. Let $\mathscr{X} \stackrel{a}{\to} \mathscr{X}$ $\stackrel{\pi}{\to} M$ be an *n*-cubic $(n \ge 1)$ hyper-equisingular family of complex projective varieties, parametrized by a complex manifold M. For each $\alpha \in$ \square_n^+ we denote by $\mathcal{T}_{\mathscr{X}_{\alpha}/M}$ the sheaf of germs of holomorphic tangent vector fields along fibers on $\mathscr{X}_{\alpha}(\mathscr{X}_0 := \mathscr{X} \text{ for } 0 := (0, \ldots, 0) \in \square_n^+)$, and by $\mathcal{T}(\mathscr{X}_{/M}, \mathscr{O}_{\mathscr{X}_{\alpha}})$ the sheaf of germs of $\mathscr{O}_{\mathscr{X}_{\alpha}}$ -valued derivations θ along fibers on \mathscr{X} , i.e., $\theta \in \mathcal{T}(\mathscr{X}_{/M},$ $\mathscr{O}_{\mathscr{X}_{\alpha}})$ are $\pi \cdot \mathscr{O}_M$ -linear maps $\mathscr{O}_{\mathscr{X}} \to a_{\alpha} * \mathscr{O}_{\mathscr{X}_{\alpha}}$ with the property $\theta(ab) = \theta(a)b + a\theta(b)$ for $a, b \in$ $\mathscr{O}_{\mathscr{X}}$, where $\pi \cdot \mathscr{O}_M$ is the topological inverse of the structure sheaf of M by the map π . For each α $\in \square_n^+$ we define

$$\begin{aligned} & ta_{\alpha} : a_{\alpha*}\mathcal{T}_{\mathcal{X}_{\alpha'M}} \to \mathcal{T}(\mathcal{X}_{/M}, \mathcal{O}_{\mathcal{X}_{\alpha}}) \text{ and} \\ & \omega a_{\alpha} : \mathcal{T}_{\mathcal{X}/M} \to \mathcal{T}(\mathcal{X}_{/M}, \mathcal{O}_{\mathcal{X}_{\alpha}}) \\ & ta_{\alpha}(\theta) := \theta a_{a}^{*} \text{ for } \theta \in a_{\alpha*}\mathcal{T}_{\mathcal{X}_{\alpha'M}}, \\ & \omega a_{\alpha}(\varphi) := a_{\alpha}^{*}\varphi \text{ for } \varphi \in \mathcal{T}_{\mathcal{X}/M}, \end{aligned}$$

where $a_{\alpha}^*: \mathcal{O}_{\mathcal{X}} \to a_{\alpha*}\mathcal{O}_{\mathcal{X}_{\alpha}}$ denotes the pull-back. We define the sheaf of germs of holomorphic tangent vector fields along fibers $\mathcal{T}(a.)$ of an *n*-cubic hyper-equisingular family $\mathcal{X} \stackrel{a}{\to} \mathcal{X} \stackrel{\pi}{\to} M$ of complex projective varieties, parametrized by a complex manifold M, by

 $\mathcal{T}(a.) :=$

$$\operatorname{Ker} \{ \bigoplus_{\alpha \in \Box_n^*} a_{\alpha *} \mathcal{T}_{\mathscr{X}_{\alpha}/M} \to \bigoplus_{\alpha \in \Box_n} \mathcal{T}(\mathscr{X}_{/M}, \mathcal{O}_{\mathscr{X}_{\alpha}}) : \\ (\theta_{\alpha}) \to (ta_{\alpha}(\theta_{\alpha}) - \omega a_{\alpha}(\theta_0)) \}.$$

Now we are going to define the Kodaira-Spencer map of a family $\mathscr{X} \xrightarrow{a} \mathscr{X} \xrightarrow{\pi} M$ as a map $\rho : \mathscr{T}_{M} \longrightarrow R^{1}\pi_{*}\mathscr{T}(a.),$

where \mathcal{T}_{M} denotes the sheaf of germs of holomorphic tangent vector fields on M. We take a point $o \in M$ and put

 $X_{\alpha} := (\pi \cdot a_{\alpha})^{-1}(o) \ (\alpha \in \square_n), \ X := \pi^{-1}(o).$ By the "analytic local triviality" of a family \mathscr{X} . $\stackrel{a.}{\to} \mathscr{X} \stackrel{\pi}{\to} M$, shrinking M sufficiently small around o, we are allowed to assume that there is a special system of Stein coverings $\mathcal{U}_{\alpha} := \{U_i^{(\alpha)}\}_{i \in \Lambda_{\alpha}}$ of X_{α} ($\alpha \in \square_n^+$), subject to the requirements in (3.1). We take such a system of Stein coverings of $\mathscr{X} \xrightarrow{a} \mathscr{X} \xrightarrow{\pi} M$ and fix it. In the subsequence we will always calculate with respect to this coverings. For each $\alpha \in \square_n^+$ we denote by $C^{p}(\mathscr{V}_{\alpha}, \mathscr{T}_{\mathscr{X}_{\alpha}/M})$ (resp. $Z^{p}(\mathscr{V}_{\alpha}, \mathscr{T}_{\mathscr{X}_{\alpha}/M})$) the p-th Cěch cochains (resp. the p-th Cěch cocycles) with values in the sheaf $\mathcal{T}_{\mathcal{X}_{\alpha}/M}$ with respect to the Stein covering \mathscr{V}_{α} . We define a subcomplex $C^{p}(a.)$ of $\bigoplus_{\alpha \in \square_{n}^{+}} C^{p}(\mathscr{V}_{\alpha}, \mathscr{T}_{\mathscr{X}_{\alpha'}M})$ by $C^{p}(a_{\cdot}) :=$

(4.1)
$$\operatorname{Ker}\{\bigoplus_{\alpha \in \bigcap_{n}^{+}} C^{p}(\mathscr{V}_{\alpha}, \mathscr{T}_{\mathscr{X}_{\alpha}/M}) \xrightarrow{\bigoplus_{\alpha \in \bigcup_{n}(ta_{\alpha} - wa_{\alpha})} \bigoplus_{\alpha \in \bigcup_{n}(ta_{\alpha} - wa_{\alpha})} \bigoplus_{\alpha \in \bigcup_{n} C^{p}(\mathscr{Y}_{\alpha}, \mathscr{T}_{\alpha}) \xrightarrow{\mathbb{C}} C^{p}(\mathscr{Y}_{\alpha}, \mathscr{T}_{\alpha}) \xrightarrow{\mathbb{C$$

 $\xrightarrow{\quad \alpha \in \cup_{n}, \alpha \alpha \to \alpha} \bigoplus_{\alpha \in \bigcap_{n}} C^{p}(\mathcal{V}_{0}, \mathcal{T}(\mathcal{X}_{/M}, \mathcal{O}_{\mathcal{X}_{\alpha}}))\}.$ Let (t_{1}, \cdots, t_{m}) and $(x_{i}^{(\alpha)1}, \cdots, x_{i}^{(\alpha)n\alpha})$ $(\alpha \in \bigcap_{n}^{+}, i \in \Lambda_{\alpha}, n_{\alpha} := \dim X_{\alpha} \text{ for } \alpha \in \bigcap_{n}, n_{0} := \text{ the loc-}$ al embedding dimension of $X_{0} = X$ be local coordinate systems on M and $U_{i}^{(\alpha)}$, respectively (for $X_{0} = X$ we take a local embedding $X \subset C^{n_{0}}$ at each point of X and consider the problem modulo $\mathscr{I}(X)$, the ideal sheaf of X in $\mathcal{O}_{C^{n_{0}}}$. Then $(x_{i}^{(\alpha)1}, \cdots, x_{i}^{(\alpha)n_{\alpha}}, t_{1}, \cdots, t_{m})$ constitutes a local coordinate system in $V_{i}^{(\alpha)} := U_{i}^{(\alpha)} \times M$. We denote by

$$\begin{cases} x_i^{(\alpha)\mu} = \varphi_{ij}^{(\alpha)\mu}(x_j^{(\alpha)1}, \cdots, x_j^{(\alpha)n_{\alpha}}, t_1, \cdots, t_m) \\ (1 \le \mu \le n_{\alpha}) \end{cases}$$
$$(1 \le \mu \le n_{\alpha}) \end{cases}$$

the transition functions of local coordinate systems in $U_i^{(\alpha)} \cap U_j^{(\alpha)}$ for $i, j \in \Lambda_{\alpha}$ with $U_i^{(\alpha)} \cap U_j^{(\alpha)} \neq \emptyset$. They satisfy the compatibility conditions:

$$\varphi_{ik}^{(\alpha)\mu}(x_k^{(\alpha)1},\cdots,x_k^{(\alpha)n_\alpha},t) = \varphi_{ij}^{(\alpha)\mu}(\varphi_{jk}^{(\alpha)1}(x_k^{(\alpha)1},\cdots,x_k^{(\alpha)n_\alpha},t),\cdots, \varphi_{jk}^{(\alpha)n_\alpha}(x_k^{(\alpha)1},\cdots,x_k^{(\alpha)n_\alpha},t),t).$$

Hence

$$\frac{\partial \varphi_{ik}^{(\alpha)\mu}}{\partial t_{\xi}} (x_{k}^{(\alpha)}, t) = \sum_{\zeta=1}^{n_{\alpha}} \frac{\partial \varphi_{ik}^{(\alpha)\mu}}{\partial x_{j}^{(\alpha)\zeta}} (\varphi_{jk}^{(\alpha)}(x_{k}^{(\alpha)}, t), t) \frac{\partial \varphi_{jk}^{(\alpha)\zeta}}{\partial t_{\xi}} (x_{k}^{(\alpha)}, t) + \frac{\partial \varphi_{ij}^{(\alpha)\mu}}{\partial t_{\xi}} (\varphi_{jk}^{(\alpha)}(x_{k}^{(\alpha)}, t), t)$$

This implies that if we define

$$\theta_{ik}^{\alpha} := \sum_{\mu=1}^{n_{\alpha}} \sum_{\xi=1}^{m} b_{\xi}(t) \frac{\partial \varphi_{ik}^{(\alpha)\mu}}{\partial t_{\xi}} (x_{k}^{(\alpha)}, t) \left(\frac{\partial}{\partial x_{i}^{(\alpha)\mu}}\right)$$

for $\tau = \sum_{\xi=1}^{m} b_{\xi}(t) \left(\frac{\partial}{\partial t_{\xi}}\right) \in \Gamma(M, \mathcal{T}_{M})$, then
 $\theta_{\alpha} := \{\theta_{ik}^{\alpha}\}_{i,k \in A_{\alpha}} \in Z^{1}(\mathcal{V}_{\alpha}, \mathcal{T}_{\mathcal{H}_{\alpha}/M}).$

On each $V_i^{(\beta)}$ $(i \in \Lambda_\beta)$ we express the holomorphic map $E_{\alpha\beta}: \mathscr{X}_\beta \to \mathscr{X}_\alpha$ corresponding to an arrow $\alpha \to \beta$ in \Box_n as

$$\begin{cases} x_{\lambda_{\alpha\beta}(i)}^{(\alpha)\mu} = e_{\alpha\beta,\mu}^{i}(x_{i}^{(\beta)1}, \cdots, x_{i}^{(\beta)n_{\beta}}) (1 \le \mu \le n_{\alpha}) \\ t_{\xi} = t_{\xi} \quad (1 \le \xi \le m) \end{cases}$$

They satisfy the compatibility conditions:

$$\varphi_{ik}^{(\alpha)\mu}(e_{\alpha\beta,1}^{k}(x_{k}^{(\beta)}),\cdots,e_{\alpha\beta,n_{\alpha}}^{k}(x_{k}^{(\beta)}),t) \\ = e_{\alpha\beta,\mu}^{i}(\varphi_{ik}^{(\beta)}(x_{k}^{(\beta)},t)) \quad (1 \leq \mu \leq n_{\alpha}).$$

Hence $\partial \varphi_{ik}^{(\alpha)\mu}$

$$\frac{\partial \varphi_{ik}}{\partial t_{\xi}} \left(e_{\alpha\beta,1}^{k}(x_{k}^{(\beta)}), \cdots, e_{\alpha\beta,n_{\alpha}}^{k}(x_{k}^{(\beta)}), t \right) \\ = \sum_{\zeta=1}^{n_{\beta}} \frac{\partial e_{\alpha\beta,\mu}^{i}}{\partial x_{i}^{(\beta)\zeta}} \left(\varphi_{ik}^{(\beta)}(x_{k}^{(\beta)}, t) \right) \frac{\partial \varphi_{ik}^{(\beta)\zeta}}{\partial t_{\xi}} \left(x_{k}^{(\beta)}, t \right)$$

This means $dE_{\alpha\beta}(\theta_{\beta}) = E_{\alpha\beta}^{*}(\theta_{\alpha})$. Hence $\{\theta_{\alpha}\}_{\alpha \in \Box_{n}} \in Z^{1}(a.)$, where $Z^{1}(a.)$ stands for 1-cycles of complex $C^{*}(a.)$ defined in (4.1). It is fairly easy to check that for each $\alpha \in \Box_{n} \theta_{\alpha}$ in fact defines an element of $C^{1}(a_{\alpha}^{-1}(\mathcal{V}_{0}), \mathcal{T}_{\mathcal{X}_{\alpha}/M})$, where $a_{\alpha}^{-1}(\mathcal{V}_{0}) := \{a_{\alpha}^{-1}(V_{i}^{(0)})\}_{i \in A_{0}}$, because $a_{\alpha} : \mathcal{X}_{\alpha} \to \mathcal{X}$ is a product family over each $V_{i}^{(0)} \in \mathcal{V}_{0}(i \in A_{0})$. Hence $\{\theta_{\alpha}\}_{\alpha \in \Box_{n}} \in Z^{1}(\mathcal{V}_{0}, \mathcal{T}(a.))$. We define $\check{\rho} : \Gamma(M, \mathcal{T}_{M}) \to H^{1}(\mathcal{X}, \mathcal{T}(a.))$ by

$$\check{\rho}(\tau) := \{\theta_{\alpha}\}_{\alpha \in \square_{n}} \in \check{H}^{1}(\mathscr{V}_{0}, \mathscr{T}(a.))$$
(Cěch cohomology)
$$\simeq H^{1}(\mathscr{X}, \mathscr{T}(a.))$$

for $\tau \in \Gamma(M, \mathcal{T}_M)$. We can see that the map $\check{\rho}$ thus defined is independent of the choice of a system of Stein coverings $\{\mathscr{V}_{\alpha}\}_{\alpha \in \square_n^+}$ of $\mathscr{X} \stackrel{a}{\longrightarrow} \mathscr{X}$, subject to the requirements in (3.1) as a map to $H^1(\mathscr{X}, \mathcal{T}(a.))$. Localizing the map $\check{\rho}$ at each point of M, we have the map $\rho: \mathcal{T}_M \to R^1\pi_*\mathcal{T}(a.)$.

4.1 Definition. We call the map ρ thus defined the *Kodaira-Spencer* map of an *n*-cubic hyper-equisingular family $\mathcal{X} \xrightarrow{a} \mathcal{X} \xrightarrow{\pi} M$ of complex projective varieties, parametrized by a complex manifold M.

We define $\operatorname{Gr}_{F}^{p}(\boldsymbol{R}_{\mathcal{O}_{M}}^{\ell}(\pi)) := F^{p}(R_{\mathcal{O}_{M}}^{\ell}(\pi)) / F^{p+1}(R_{\mathcal{O}_{M}}^{\ell}(\pi)).$ Then, by Theorem 3.1, (i), $\operatorname{Gr}_{F}^{p}(\boldsymbol{R}_{\mathcal{O}_{M}}^{\ell}(\pi)) \simeq \boldsymbol{R}^{\ell-p} \pi_{*}(s(a_{1\cdot*}\mathcal{Q}_{\mathcal{K}./M}^{p}[1])).$

 $Gr_F(\mathcal{R}_{\mathcal{O}_M}(\pi)) \cong \mathcal{R} = \pi_*(S(a_{1.*}\Omega_{\mathcal{X}_{-/M}}[1])).$ By Theorem 3.1, (iii) (the Griffiths transversality), the Gauss-Mannin connection ∇ on $R_{\mathcal{O}}^{\ell}(\pi)$ induces the following map:

$$\Omega^{I}_{M} \otimes \mathbf{R}^{\ell-p+1} \pi_{*}(s(a_{1,*}\Omega^{p-1}_{\mathcal{X},M})[1]) \xrightarrow{} \Omega^{I}_{M} \otimes \mathbf{R}^{\ell-p+1} \pi_{*}(s(a_{1,*}\Omega^{p-1}_{\mathcal{X},M})[1]).$$

This map $\operatorname{Gr}_{F}^{\nu}(\nabla)$ is related to the Kodaira-Spencer map ρ as follows:

4.2 Theorem. The following diagram commutes up to $(-1)^{p+1}$:

where $\tau \cdot \operatorname{Gr}_{F}^{\flat}(\nabla)$ is defined to be the contraction of $\operatorname{Gr}_{F}^{\flat}(\nabla)(\cdot)$ by τ .

The proof of this theorem is a straightforward calculation in terms of local coordinates.

References

- [1] P. Deligne: Théorie de Hodge. III. Publ. Math. IHES, 44, 6-77 (1975).
- [2] F. El Zein: Introduction à la théorie de Hodge mixte. Hermann, Paris (1991).
- [3] N. M. Katz and T. Oda: On the differenciation of De Rham cohomology classes with respect to parameters. J. Math. Kyoto Univ., 8, no. 2, 199– 213 (1968).
- [4] S. Tsuboi: Cubic hyper-equisingular families of complex projective varieties. I. Proc. Japan Acad., 71A, 207-209 (1995).