Cubic Hyper-equisingular Families of Complex Projective Varieties. I

By Shoji TSUBOI

Department of Mathematics, Kagoshima University (Communicated by Heisuke HIRONAKA, M. J. A., Nov. 13, 1995)

Introduction. The purpose of this note is to outline a recent result of the author's study on *cubic hyper-equisingular families of complex projec*tive varieties, from which there naturally arise variations of mixed Hodge structure. In order to define such families we use *cubic hyper-resolutions* of complex projective varieties due to V. Navarro Aznar, F. Guillén *et al.*, [1]. The initial motivation for this study was to describe the variation of mixed Hodge structure which might be expected to arise from a *locally trivial* family of projective varieties with *ordinary singularities* (cf. [3], [4]). Details will be published elsewhere.

§1. Cubic hyper-equisingular families of complex projective varieties. We denote by Z the integer ring.

1.1 Definition. For $n \in \mathbb{Z}$ with $n \ge 0$ the augmented *n*-cubic category, denoted by \square_n^+ , is defined to be a category whose objects $Ob(\square_n^+)$ and the set of homomorphisms $Hom_{\square_n^+}(\alpha, \beta)$ $(\alpha = (\alpha_0, \alpha_1, \ldots, \alpha_n), \beta = (\beta_0, \beta_1, \ldots, \beta_n) \in Ob(\square_n^+)$ are given as follows:

 $Ob(\square_n^+) := \{ \alpha = (\alpha_0, \alpha_1, \dots, \alpha_n) \in \mathbb{Z}^{n+1} \\ \mid 0 \le \alpha_i \le 1 \text{ for } 0 \le i \le n \},\$

Hom_ $\square_n^+(\alpha, \beta) :=$

 $\begin{cases} \alpha \to \beta \text{ (an arrow from } \alpha \text{ to } \beta) & \text{if } \alpha_i \leq \beta_i \text{ for } 0 \leq i \leq n \\ \emptyset & \text{otherwise.} \end{cases}$

For n = -1 we understand \Box_{-1}^+ to be the punctual category $\{*\}$, i. e., the category consisting of one point. For $n \ge 0$ the *n*-cubic category, denoted by \Box_n , is defined to be the full subcategory of \Box_n^+ with $Ob(\Box_n) = Ob(\Box_n^+) - \{(0, \ldots, 0)\}$. Notice that $Ob(\Box_n^+) - \{(0, \ldots, 0)\}$ (resp. $Ob(\Box_n)$) can be considered as a finite ordered set whose order is defined by $\alpha \le \beta \Leftrightarrow \alpha \to \beta$ for $\alpha, \beta \in Ob(\Box_n^+)$ (resp. $Ob(\Box_n)$).

1.2 Definition. A \square_n^+ -object (resp. \square_n^- object) of a category \mathscr{C} is a contravariant functor X.⁺ (resp. X.) from \square_n^+ (resp. \square_n) to \mathscr{C} . It is also called an *augmented* n-cubic object of \mathscr{C} (resp. an n-cubic object of \mathscr{C}).

1.3 Definition. Let X., Y. be \square_n^+ -objects

of a category \mathscr{C} . We define a morphism $\Phi: X$. $\rightarrow Y$. to be a natural transformation from the functor X. to the one Y. over the identity functor id: $\Box_n^+ \rightarrow \Box_n^+$.

Let X. be an *n*-cubic object of \mathscr{C} $(n \ge 0)$, X a (-1)-object of \mathscr{C} . We denote by $X \times \square_n$ the *n*-cubic object defined by $(X \times \square_n)(\alpha) = X$ for every $\alpha \in \square_n$. An *augmentation of* X. to X is a morphism from X. to $X \times \square_n$. We may think of an *n*-cubic object of \mathscr{C} with an augmentation to X as an augmented *n*-cubic object of \mathscr{C} . Conversely, an augmented *n*-cubic object X^+ : $(\square_n^+)^\circ \to \mathscr{C}$ of \mathscr{C} can be identified with an *n*-cubic object X. := $X^+_{:|\square_n}$: $(\square_n)^\circ \to \mathscr{C}$ of \mathscr{C} with an augmentation to $X^+_{(0,...,0)}$. In the following we shall interchangeably use an augmented *n*-cubic object of \mathscr{C} and an *n*cubic object of \mathscr{C} with an augmentation.

1.4 Definition. For a \Box_n^+ -complex projective variety $X_{\cdot,n}$ a contravariant functor Y_{\cdot} from \Box_1^+ to the category of \Box_n^+ -complex projective varieties is called a 2-resolution of X_{\cdot} if Y_{\cdot} is defined by a cartesian square of morphisms of \Box_n^+ -complex projective varieties

(1.1)
$$\begin{array}{ccc} Y_{11} & \longrightarrow & Y_{01}. \\ \downarrow & & \downarrow f \\ Y_{10} & \longrightarrow & Y_{00}. \end{array}$$

which satisfies the following conditions:

(i) $Y_{00} = X_{.}$

- (ii) Y_{01} . is a smooth \Box_n^+ -complex projective variety, i.e., a contravariant functor from \Box_n^+ to the category of smooth complex projective varieties,
- (iii) the horizontal arrows are closed immersion of \Box_n^+ -complex projective varieties,
- (iv) f is a proper morphism between \Box_n^+ complex projective varieties, and
- (v) f induces an isomorphism from $Y_{01\beta} Y_{11\beta}$ to $Y_{00\beta} Y_{10\beta}$ for any $\beta \in \operatorname{Ob}(\square_n^+)$.

We think of the cartesian square in (1.1) as a morphism from the \Box_{n+1}^+ -complex projective variety $Y_{1..}$ to the one $Y_{0...}$ and write it as $Y_{1..} \rightarrow Y_{0...}$ For a 2-resolution Z. of $Y_{1...}$ we define the

$$rd(Y_{.}, Z_{.}) := \begin{array}{ccc} Z_{11} & \longrightarrow & Z_{01}. \\ \downarrow & & \downarrow \\ Z_{10}. & \longrightarrow & Y_{0..}, \end{array}$$

and call it the *reduction* of $\{Y, Z\}$.

1.5 Definition. Let X be a complex projective variety and let $\{X^1, X^2, \dots, X^n\}$ be a sequence of \Box_r^+ -complex projective varieties X'.(1) $\leq r \leq n$) such that

(i) X^{1} is a two resolution of X, and (ii) X^{r+1} is a two resolution of X'_{1} . for $1\leq r\leq n-1.$

Then, by induction on n, we define

$$Z_{\cdot} := rd(X_{\cdot}^{1}, X_{\cdot}^{2}, \cdots, X_{\cdot}^{n})$$

:= $rd(rd(X_{\cdot}^{1}, X_{\cdot}^{2}, \cdots, X_{\cdot}^{n-1}), X_{\cdot}^{n})$

 $:= rd(rd(X^{1}, X^{2}, \cdots, X^{n-1}), X^{n}).$ With this notation, if Z_{α} are smooth for all $\alpha \in$ \square_n , we call Z. an augmented n-cubic hyperresolution of X.

We denote by $\mathcal{F}_{M}(\operatorname{Proj}/C)$ (resp. $\mathcal{F}_{M}(\operatorname{An}/C)$) the category of analytic families of complex projective (resp. analytic) varieties, parametrized by a complex space M.

1.6 Definition. we call a \square_n^+ -object (resp. \square_n -object) of $\mathscr{F}_M(\operatorname{Proj}/C)$ (resp. $\mathscr{F}_M(\operatorname{An}/C)$) an analytic family of augmented n-cubic (resp. n-cubic) complex projective (resp. analytic) varieties, parametrized by a complex space M.

Let $b: X \rightarrow X$ be an augmented *n*-cubic complex projective (resp. analytic) variety and Ma complex space. Then $X_{\alpha} \times M$ ($\alpha \in \square_n$), $X \times$ M, $a_{\alpha} := b_{\alpha} \times \operatorname{id}_{M} : X_{\alpha} \times M \to X \times M$ and $\pi :=$ $\Pr_M: X \times M \to M$, the projection to M, constitute an analylie family of augmented *n*-cubic complex projective (resp. analytic) varieties, parametrized by a complex space M, which we denote by

$$X. \times M \xrightarrow{a:=b.\times \mathrm{id}_M} X \times M \xrightarrow{\pi:=\mathrm{Pr}_M} M$$

and call the product family of augmented n-cubic complex projective (resp. analytic) varieties, parametrized by a complex space M. Let $\mathscr{X}^+ = \{a : \mathscr{X} \to \mathscr{X}\}$ be an analytic family of augmented n-cubic complex projective (resp. analytic) varieties, parametrized by a complex space M. Whenever we wish to express its parameter space M explicitly, we write

(1.2)
$$\mathscr{X} \xrightarrow{a} \mathscr{X} \xrightarrow{\pi} M.$$

For $t \in M$, $X_{t\alpha} := (\pi \cdot a_{\alpha})^{-1}(t)$ $(\alpha \in \Box_n)$, $X_t := \pi^{-1}(t)$ and $a_{t\alpha} := a_{\alpha|X_{t\alpha}} : X_{t\alpha} \to X_t$ constitute an

augmented n-cubic complex projective (resp. analytic) variely, which we denote by $a_t: X_t \to X_t$ and call the *fiber at* $t \in M$ of an analytic family of augmented n-cubic complex projective (resp. analytic) varietics in (1.2). Similarly, for an open subset U of \mathscr{X} , we form an analytic family

$$a.^{-1}(\mathcal{U}) \xrightarrow{a.\mathbf{u}a^{-1}(\mathcal{U})} \mathcal{U} \xrightarrow{\pi} \pi(\mathcal{U})$$

of augmented *n*-cubic analytic varieties, parametized by a complex space $\pi(\mathcal{U})$. With these notions, we define an n-cubic hyper-equisingular family of complex projective varieties, parametrized by a complex space as fallows:

1.7 Definition. Let $\mathscr{X} \xrightarrow{a} \mathscr{X} \xrightarrow{\pi} M$ be a family of augmented n-cubic complex projective varieties, parametrized by a complex space M. We call $\mathscr{X} \xrightarrow{a} \mathscr{X} \xrightarrow{\pi} M$ an *n*-cubic hyperequisingular family of complex projective varieties, parametrized by a complex space M if it satisfies the fallowing conditions:

- (i) for any point $t \in M$, $a_t : X_t \to X_t$ is an augmented *n*-cubic hyper-resolution of X_{t} ,
- (ii) (analytical "local triviality") for any point $p \in \mathcal{X}$, there exists an open neighborhood \mathcal{U} of p in \mathcal{K} such that $a^{-1}(\mathcal{U}) \xrightarrow{a} \mathcal{U} \xrightarrow{\pi} \pi(\mathcal{U})$ is analytically isomorphic to

$$(a.^{-1}(\mathcal{U}) \cap X_{\pi(p)}) \times \underset{\mathsf{Pr}_{\pi(\mathcal{U})}}{\pi(\mathcal{U})} \pi(\mathcal{U}) \to (\mathcal{U} \cap X_{\pi(p)}) \times \pi(\mathcal{U})$$

over the identy map $\operatorname{id}_{\pi(\mathcal{U})}: \pi(\mathcal{U}) \to \pi(\mathcal{U})$

1.8 Proposition. Let $\mathscr{X} \xrightarrow{a} \mathscr{X} \xrightarrow{\pi} M$ be an ncubic hyper-equisingular family of complex projective varieties, parametrized by a complex manifold M. Then the \Box_n -object $\pi_{\cdot}: \mathscr{X}_{\cdot} \to M$ ($\pi_{\cdot}:= \pi \circ a_{\cdot}$) of smooth families of complex manifolds, parametrized by M is C^{∞} trivial at any point of M; that is, for any point $t_0 \in M$, there exist an open neighborhood N of t_0 in M and a diffeomorphism Φ .: $(\pi^{-1})(N) \to X_{t_0} \times N$ of \square_n -objects of complex manifolds over the identy map $id_N: N \rightarrow N$. Furthermore, $\mathfrak{X} \stackrel{a.}{\to} \mathfrak{X} \stackrel{\pi}{\to} M$ is topologically trivial at any point of M.

1.9 Example. By a locally trivial family of complex projective varieties, parametrized by a complex space M, we mean an analytic family $\pi: \mathscr{Z} \to$ M of complex projective varieties, parametrized by a complex space M, which satisfies the following condition: for every point $p \in \mathcal{X}$, there exist open neighborhoods \mathcal{U} of p in \mathcal{L} , V of $\pi(p)$ in Mwith $\pi(\mathcal{U}) = V$, and a biholomorphic map $\phi: \mathcal{U}$

No. 9]

 $\rightarrow U \times V$, where we define $U := \mathcal{U} \cap Z_{\pi(p)}$, such that (a) $\Pr_V \circ \phi = \pi_{|\mathcal{U}|}$ and (b) $\phi_{|U \times p} := id_{U \times p}$. With this notion, we get cubic hyper-equisingular families of complex projective varieties from locally trivial families of complex projective varieties with ordinary singularities of dimension ≤ 5 as well as from locally trivial families of complex projective varieties with normal crossing of any dimension by taking their simultaneous cubic hyper-resolutions. Here we say that a complex projective variety is with ordinary singularities if it is locally isomorphic to one of the germs of pure-dimensional hypersurfaces with locally stable parametrizations in a complex manifold (cf. [3], [4]).

§2. Cohomological descent for cubic hyperequisingular families. The relative version of "cohomological descent" holds for a cubic hyperfamily of complex equisingular projective varieties. In order to state these facts we prepare some notation and terminology. Let $\Phi: X \to X$ be an n-cubic topological space with an augmentation to a topological space X. We denote by $\mathcal{M}(X, R)$ and $\mathcal{M}(X, R)$ the categories of R-module sheaves on X. and X, respectively, where R is a commutative ring. For an R-module sheaf \mathscr{F} on X we define its inverse image $\boldsymbol{\varphi}^* \mathscr{F}$ $\in \mathcal{M}(X, R)$ in a natural way. The functor Φ^* : $\mathcal{M}(X, R) \to \mathcal{M}(X, R)$ has a right adjoint $\Phi_{\cdot*}$: $\mathcal{M}(X, R) \to \mathcal{M}(X, R)$. Since the functor Φ^* is exact, it defines a functor

(2.1) $\Phi^*: D^+(X, R) \to D^+(X, R),$

where $D^+(X, R)$ and $D^+(X, R)$ denote the derived categories of lower bounded complexes of R-module sheaves on X and X, respectively. The functor in (2.1) has a right adjoint

 $\boldsymbol{R}\boldsymbol{\Phi}_{\cdot*}: D^+(X_{\cdot}, R) \to D^+(X, R).$

For more details we refer to [1, Exposé I].

2.1 Theorem (Cohomological descent of R-module sheaves). Let $\mathcal{X} \stackrel{a}{\longrightarrow} \mathcal{X} \stackrel{\pi}{\longrightarrow} M$ be an n-cubic $(n \geq 1)$ hyper-equisingular family of complex projective varieties, parametrized by a complex space M. Then, for an R-module sheaf \mathcal{A} on \mathcal{X} , the adjunction map

$$\mathscr{A} \to \mathbf{R}a_{*}a^{*}\mathscr{A}$$

is an isomorphism in $D^+(\mathcal{X}, R)$.

For an *n*-cubic hyper-equisingular family $\mathscr{X} \xrightarrow{a} \mathscr{X} \xrightarrow{\pi} M$ of complex projective varieties, parametrized by a complex space M, we denote by $\mathcal{Q}_{\mathscr{X}_{\alpha}/M}$ the relative de Rham complex of a smooth family $\pi \circ a_{\alpha} : \mathscr{X}_{\alpha} \longrightarrow M$ of complex manifolds for each $\alpha \in \square_n$. Then $\mathcal{Q}_{\mathscr{X}_n/M} := {\mathcal{Q}_{\mathscr{X}_n/M}}_{\alpha \in [-]_n}$ is obviously a complex of sheaves of C-vector spaces on a \square_n -complex manifold \mathscr{X} ..

2.2 Theorem (Cohomological descent of relative de Rham complexes). Under the same setting as above, there naturally exists an isomorphism

$$DR_{\mathcal{K}/M}^{\cdot} \simeq \mathbf{R}a_{\cdot*}\Omega_{\mathcal{K}./M}^{\cdot}$$

in $D^+(\mathcal{X}, C)$, where $DR_{\mathcal{X}/M}$ is the cohomological relative de Rham complex of a locally trivial family $\pi: \mathcal{X} \to M$, i.e., the relative version of a cohomological de Rham complex of a singular variety (cf. [2, p.28, Remark]).

The proofs of these theorems are almost identical with those in the absolute cases, i.e., M is a single point (cf. [1, p.41, Théorèm 6.9], [1, p.61, Théorèm 1.3]).

References

- F. Guillén, V. Navarro Aznar, P. Pascual-Gainza and F. Puerta: Hyperrésolutions cubiques et descente cohomologique. Lect. Notes in Math., vol. 1335, Springer, Berlin (1988).
- [2] R. Hartshorne: On the de Rham cohomology of algebraic varieties. Publ. Math. IHES, 45, 5-99 (1976).
- [3] S. Tsuboi: Deformations of locally stable holomorphic maps and locally trivial displacements of analytic subvarieties with ordinary singularities. Sci. Rep. Kagoshima Univ., 35, 9-90 (1986).
- [4] S. Tsuboi: Global existence of the universal locally trivial family of analytic subvarieties with locally stable parametrizations of a compact complex manifold. J. Fac. Sci. Univ. Tokyo, 40, no.1, 161-201 (1993).
- [5] S. Tsuboi: Variations of mixed Hodge structure arising from cubic hyperequisingular families of complex projective varieties. I. II (Preprint series no.22, no.23, Institute of Mathematics, University of Oslo, 1995).