60. On Locally Trivial Families of Analytic Subvarieties with Locally Stable Parametrizations of Compact Complex Manifolds

By Syôji TSUBOI

Department of Mathematics, Kagoshima University (Communicated by Kunihiko KODAIRA, M. J. A., Oct. 12, 1992)

Introduction. The purpose of this note is to outline the recent results of our study on locally trivial families, i.e., families which locally are products, of *analytic subvarieties with locally stable parametrizations* of a compact complex manifold (cf. Definition 1.2 below), parametrized by (possibly nonreduced) complex spaces. The main theorem is as follows:

Main theorem. Let Y be a compact complex manifold. We denote by E(Y) the set of all analytic subvarieties with locally stable parametrizations of Y. We denote by Z_t an analytic subvariety with a locally stable parametrization of Y corresponding to a point $t \in E(Y)$. We define a subset $\tilde{\mathscr{Z}}(Y)$ of the product space $Y \times E(Y)$ by

 $\tilde{\mathscr{Z}}(Y) := \{ (y, t) \mid t \in E(Y), y \in Z_t \}.$

We denote by $\tilde{\pi}: \tilde{\mathscr{X}}(Y) \to E(Y)$ the restriction of the projection map $Pr_{E_Y}: Y \times E(Y) \to E(Y)$ to $\tilde{\mathscr{X}}(Y)$. Then E(Y) and $\tilde{\mathscr{X}}(Y)$ have the structure of Hausdorff complex spaces which enjoy the following properties:

(i) $\mathscr{X}(Y)$ is a closed complex subspace of the product complex space $Y \times E(Y)$, and $\tilde{\pi} : \widetilde{\mathscr{X}}(Y) \to E(Y)$ is a locally trivial family of analytic subvarieties with locally stable parametrizations of Y, parametrized by E(Y).

(ii) (Universality) Given a locally trivial family $\pi : \mathcal{X} \to M$ of analytic subvarieties with locally stable parametrizations of Y, parametrized by a complex space M, there exists a unique holomorphic map $f : M \to E(Y)$ such that $f^* \tilde{\mathcal{X}}(Y) = \mathcal{X}$.

(iii) We denote by D(Y) the Duady space of closed complex subspaces of Y, and by $\tilde{\pi}_o: \tilde{\mathcal{U}}(Y) \to D(Y)$ the universal family of closed complex subspaces of Y (cf. [1]). Then the inclusion map $\iota: E(Y) \to D(Y)$ is a holomorphic immersion and $\iota^* \tilde{\mathcal{U}}(Y) = \tilde{\mathcal{X}}(Y)$.

(iv) $(C^{\infty}$ triviality) Let $t_o \in E(Y)$ be a point whose corresponding point of $E(Y)_{red}$ (the reduction of E(Y)) is non-singular, then there exist an open neighborhood N of t_o in E(Y) and a diffeomorphism $\Psi : Y \times N \to Y \times N$ over N (i.e., $pr_N \circ \Psi = pr_N$) such that $\Psi(Z_{t_0} \times N) = \tilde{\pi}^{-1}(N)$.

(v) (C^{∞} type constancy) Let t and t' be two points of the same connected component of E(Y), then there exists a diffeomorphism $\varphi: Y \to Y$ such that $\varphi(Z_t) = Z_{t'}$.

These results might be considered as a generalization of Namba's results in [6] to higher dimensional singular cases. Details will be published elsewhere.

§1. Local existence of the universal locally trivial family.

1.1 Definition. A holomorphic map $f: X \to Y$ between complex manifolds is said to be *locally stable* if, for any point $q \in Y$ and any finite subset $S \subset f^{-1}(q)$, a multi-germ $f: (X, S) \to (Y, q)$ is simultaneously stable, i.e., any unfolding of f is trivial.

1.2 Definition. An analytic subvariety Z (possibly not of pure dimension) of a complex manifold Y is said to be with a locally stable parametrization if

(i) its normal model X is non-singular, and

(ii) the composite map $f := \iota \circ \mathscr{N} : X \to Y$ is locally stable, where $\mathscr{N} : X \to Z$ is the normalization map and $\iota : Z \hookrightarrow Y$ is the inclusion map.

From now on let Z be an analytic subvariety with a locally stable parametrization of a compact complex manifold Y, and let $f := \iota \circ \mathscr{P} : X \to Y$ be the same as in Definition 1.2 unless otherwise stated. We denote by $(GC)^{\circ}$ the dual category of germs of complex spaces. We define two deformation functors D and L from $(GC)^{\circ}$ to *Set*, the category of sets, by:

- $D: (M, o) \rightarrow \{ \text{ isomorphism classes of the families of deformations of the holomorphic map } f: X \rightarrow Y \text{ with } Y \text{ fixed, parametrized by } (M, o) \},$
- $L: (M, o) \rightarrow \{ \text{ isomorphism classes of the locally trivial families of dis$ $placements of Z in Y, parametrized by <math>(M, o) \},$

where (M, o) denotes a germ of a complex space. Given a family $(\mathscr{X}, F, \pi, M, o, \varphi)$ of deformations of the map $f: X \to Y$ with Y fixed, parametrized by (M, o), we define $\mathscr{Z} := F(\mathscr{X})$ and $\pi_1 := Pr_{M|\mathscr{Z}} : \mathscr{Z} \to M$, the restriction to \mathscr{Z} of the projection map $Pr_M : Y \times M \to M$. Then, since $f: X \to Y$ is locally stable, $(\mathscr{Z}, \pi_1, M, o)$ is a locally trivial family of displacements of Z in Y, parametrized by (M, o). The correspondence $(\mathscr{X}, F, \pi, M, o, \varphi)$ $\to (\mathscr{Z}, \pi_1, M, o)$ give a *natural transformation* between the functors D and L. Furthermore, the following Lemma 1.3 and Theorem 1.4 ensure that this correspondence is a *natural equivalence*.

1.3 Lemma. Let $(\mathcal{X}, F, \pi, M, o, \varphi)$ be a family of deformations of the map $f: X \to Y$ with Y fixed, parametrized by a complex space. We define $\mathcal{X} := F(\mathcal{X})$, and let $\mathcal{X} \xrightarrow{F'} \mathcal{X} \subseteq Y \times M$ be the factorization of F. Then there is an open neighborhood N of o in M such that:

(i) $F_t: X_t \to Y \times t(X_t:=\pi^{-1}(t), F_t:=F_{|X_t}:X_t \to Y=Y \times t)$ is locally stable for any $t \in N$, and

(ii) $F'_t: X_t \to Z_t(Z_t: = \mathcal{Z} \cap (Y \times t), F'_t: = F'_{|X_t}: X_t \to Z_t)$ is the normalization map of Z_t for any $t \in N$.

1.4 Theorem (Relative normalization theorem). Let $\pi_1: \mathcal{X} \to M$ be a locally trivial family of analytic varieties parametrized by a complex space. Then there exist a locally trivial family $\pi: \mathcal{X} \to M$ of analytic varieties parametrized by the same complex space M and a surjective holomorphic map $\nu: \mathcal{X} \to \mathcal{X}$ over M such that $\nu_t: X_t \to Z_t(X_t:=\pi^{-1}(t), Z_t:=\pi_1^{-1}(t), \nu_t:=\nu_{|X_t}: X_t \to Z_t)$ is the normalization of Z_t for any $t \in M$. Furthermore, the family $\pi: \mathcal{X} \to M$ and the surjective holomorphic map $\nu: \mathcal{X} \to \mathcal{X}$ over M are uniquely determined up to biholomorphic maps over M.

Proof. By the local triviality of the family, for each point $p \in \mathscr{X}$, there exist open neighborhoods \mathscr{U} of p in \mathscr{X} , V of $\pi_1(p)$ in M and a biholomorphic map $\varphi : \mathscr{U} \to U \times V$, where $U := \mathscr{U} \cap \pi_1^{-1}(\pi_1(p))$, such that $\pi_{1|\mathscr{U}} = Pr_V \circ \varphi$. We may assume that V is a closed complex subspace of a domain D in a complex number space \mathbb{C}^n . We denote by $\widetilde{\mathscr{O}}_{U \times D}$ the sheaf of germs of weakly holomorphic functions on $U \times D$ (i.e., holomorphic functions on $(U \setminus S(U)) \times D$, which are locally bounded on $U \times D$, where S(U) denotes the singular locus of U), which is a coherent $\mathscr{O}_{U \times D}$ -module (cf. [7]). We define

$$\tilde{\mathcal{O}}_{\mathcal{U}/\mathcal{V}} := (\varphi^{-1})_* \{ \mathcal{O}_{U \times \mathcal{V}} \otimes_{\mathcal{O}_{U \times D}} [\tilde{\mathcal{O}}_{U \times D}/(Pr_D^*\mathcal{I}_{\mathcal{V}}) \cdot \tilde{\mathcal{O}}_{U \times D}] \},$$

where \mathscr{I}_V denotes the ideal sheaf of V in \mathscr{O}_D . We can patch up these sheaves defined locally and obtain a global $\mathscr{O}_{\mathscr{X}}$ -module, which we denote by $\widetilde{\mathscr{O}}_{\mathscr{X}/M}$ and call the sheaf of germs of weakly holomorphic functions along fibers of a locally trivial family $\pi_1: \mathscr{X} \to M$. From the definition it follows that $\widetilde{\mathscr{O}}_{\mathscr{X}/M}$ is a coherent $\mathscr{O}_{\mathscr{X}}$ -module. Let $\nu: \mathscr{X} \to \mathscr{X}$ be the analytic spectrum of $\widetilde{\mathscr{O}}_{\mathscr{X}/M}$ (cf. [5]) and we define $\pi := \pi_1 \circ \nu : \mathscr{X} \to M$. Then the surjective holomorphic map $\nu: \mathscr{X} \to \mathscr{X}$ over M and the family $\pi: \mathscr{X} \to M$ enjoy the properties in the theorem. Q.E.D.

1.5 Corollary. For an analytic subvariety Z with a locally stable parametrization of a compact complex manifold Y, there exists a family $(\bar{\mathcal{I}}, \bar{\pi}_1, \bar{M}, \bar{o})$ of locally trivial displacements of Z in Y, parametrized by a complex space such that:

(i) $\bar{\pi}_1^{-1}(t)$ is an analytic subvariety with a locally stable parametrization of Y for any $t \in \bar{M}$,

(ii) $\bar{\pi}_1^{-1}(t) \neq \bar{\pi}_1^{-1}(t')$ for any $t, t' \in \bar{M}$ with $t \neq t'$, and

(iii) universal at any point $t \in \overline{M}$.

Proof. Let $\mathcal{P}: X \to Z$ be the normalization of Z and $\iota: Z \hookrightarrow Y$ the inclusion map. We define $f := \iota \circ \mathcal{P}: X \to Y$. By Flenner's theorem [2, Theorem (8.5)] there exists a semi-universal family $(\bar{\mathcal{X}}, \bar{F}, \bar{\pi}, \bar{M}, \bar{o}, \bar{\varphi})$ of deformations of $f: X \to Y$ with Y fixed. We define $\bar{\mathcal{X}} := \bar{F}(\bar{\mathcal{X}})$ and $\bar{\pi}_1 := Pr_{\bar{M}|\bar{x}}: \bar{\mathcal{X}} \to \bar{M}$, the restriction to $\bar{\mathcal{X}}$ of the projection map $pr_{\bar{M}}: Y \times \bar{M} \to \bar{M}$. By Lemma 1.3, shrinking \bar{M} around \bar{o} if necessary, we may assume that the family $(\bar{\mathcal{X}}, \bar{\pi}_1, \bar{M}, \bar{o})$ satisfies the condition (i) in the corollary. It is the *Kuranishi family* for locally trivial displacements of Z in Y, because the functors D and L are equivalent. Let D(Y) be the Duady space of closed complex subspaces of Y, $\bar{\pi}_o: \tilde{\mathcal{U}}(Y) \to D(Y)$ the universal family of closed complex subspaces of Y, and \tilde{o} the point of D(Y) corresponding to the analytic subvariety Z. By (0.2) Corollary in [3], for any point $z \in Z$, there exists a locally closed complex subspace N_z of D(Y) containing the point \tilde{o} , which enjoys the following property:

If $\alpha : (T, o) \to (D(Y), \tilde{o})$ is a holomorphic map between germs of complex spaces, then the induced family $(\alpha^* \tilde{\mathcal{U}}(Y), z) \to (T, o)$ of deformations of the germ (Z, z) of a complex space is isomorphic to the trivial deformation $(Z, z) \times (T, o) \to (T, o)$ if, and only if, α factorizes over (N_z, \tilde{o}) .

We define $\tilde{N} := \bigcap_{z \in \mathbb{Z}} N_z$ (the intersection as complex subspaces), $\tilde{\mathscr{X}} := \tilde{\mathscr{U}}(Y)_{|\tilde{N}|}$ (the restriction of $\tilde{\mathscr{U}}(Y)$ over \tilde{N}), and $\tilde{\pi} := \tilde{\pi}_{o|\tilde{\mathscr{X}}} : \tilde{\mathscr{X}} \to \tilde{N}$ (the restriction of

tion of $\tilde{\pi}_o: \tilde{\mathcal{U}}(Y) \to D(Y)$ to $\tilde{\mathcal{X}}$. Then, by the definition of the family $(\tilde{\mathcal{X}}, \tilde{\pi}, \tilde{N}, \tilde{o})$ it is a locally trivial family of displacements of Z in Y that satisfies the condition (ii) in the corollary and is maximal (= versal) at \tilde{o} . Comparing $(\bar{\mathcal{X}}, \bar{\pi}_1, \bar{M}, \bar{o})$ with $(\tilde{\mathcal{X}}, \tilde{\pi}, \tilde{N}, \tilde{o})$, we conclude that they are isomorphic to each other in sufficiently small open neighborhoods of \bar{o} and \tilde{o} in \bar{M} and \tilde{M} , respectively. From this fact it follows that $(\bar{\mathcal{X}}, \pi_1, \bar{M}, \bar{o})$ satisfies the conditions (ii) and (iii) in the corollary in a sufficiently small open neighborhood of \bar{o} in \bar{M} .

§2. Proof of the main theorem. For any analytic subvariety Z of Y, the family $(\bar{\mathcal{X}}, \bar{\pi}_1, \bar{M}, \bar{o},)$ in Corollary 1.5 gives a structure of a locally trivial family of analytic subvarieties with locally stable parametrizations of Y to $\bar{\pi}:\tilde{\mathcal{X}}(Y) \to E(Y)$ around Z. By the uniqueness of the universal family $(\bar{\mathcal{X}}, \bar{\pi}_1, \bar{M}, \bar{o},)$ up to isomorphisms, these local structures patch up to give a global structure of locally trivial family of analytic subvarieties with locally stable parametrizations of Y to $\bar{\pi}:\tilde{\mathcal{X}}(Y) \to E(Y)$. Following Namba's proof in [6], we can prove that E(Y) is Hausdorff. The assertions (i)-(iii) in Main theorem follows directly from the above construction. The assertions (iv) and (v) follows from the C^{∞} triviality of deformations of a locally stable holomorphic map (cf. [9]).

References

- [1] A. Douady: Le problème de modules pour les sous-espaces analytiques compacts d'un espace analytique donné. Ann. Inst. Fourier, 16, 1-98 (1966).
- H. Flenner: Über Deformationen holomorpher Abbildungen. Osnabrücker Schriften zur Mathematik, Universität Osnabrück (1979).
- [3] H. Flenner and S. Kosarew: On locally trivial deformations. Publ. RIMS, Kyoto Univ., 23, 627-665 (1987).
- [4] E. Horikawa: On deformations of holomorphic maps. I. J. Math. Soc. of Japan, 25, no. 3, 372-396 (1973).
- [5] C. Houzel: Géométrie analytique local. II. Séminaire Henri Cartan, 13e année (1960/61).
- [6] M. Namba: On maximal families of compact submanifolds of complex manifolds. Tôhoku Math. J., 24, 581-609 (1972).
- [7] R. Narashiman: Introduction to the theory of analytic spaces. Lect. Notes in Math., vol. 25, Springer-Verlag (1966).
- [8] S. Tsuboi: Deformations of locally stable holomorphic maps and locally trivial displacements of analytic subvarieties with ordinary singularities. Sci. Rep. Kagoshima Univ., 35, 9-90 (1986).
- [9] ——: On deformations of locally stable holomorphic maps (preprint).