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Introduction. In this paper we shall give a definition of complex ana-
lytic subspaces with locally stable parametrizations o compact complex mani-
folds, which is a generalization of closed complex analytic subsets o simple
normal crossing in [3] and analytic subvarieties with ordinary singularities
in [8], and we show that their logarithmic deformations and locally trivial
displacements are equivalent to deformations o locally stable holomorphic
maps (cf. Definition 1.1 below). From this equivalence and Miyajima-Namba-
Flenner’s theorem on the existence of the Kuranishi amily o detormations
o holomorphic maps, it follows that there exist the Kuranishi amily o
logarithmic deformations and the maximal amily o? locally trivial displace-
ments of a complex analytic subspace with a locally stable parametrization.
These are a unification and a generalization o the results in [3] and [8].
Throughout this paper all complex analytic spaces are assumed to be reduced,
second countable, and finite dimensional. For notation and terminology
concerning logarithmic de0rmations, locally trivial displacements o a com-
plex analytic subspace and deformations of a holomorphic map, we refer to
[3], [8] and [2], respectively.

1. Complex analytic subspaces with locally stable parametrizations
and their deformations. Let X and Y be comp[ex manifolds, and S and T
finite subsets of X and Y, respectively. A multi-germ f" (X,S)o(Y, T)
ot a holomorphic map at S is an equivalence class of holomorphiC maps
g" UY with g(S)-- T, where U are open neighborhoods o S in X. Through-
out this paper we shall interchangeably use a multi-germ o f and a re-
presentative g of f. A germ of a parametrized amily o multi-germs o
holomorphic maps is a multi-germ F" (X C, S 0)-(Y C", T 0) o a
holomorphic map such that F(X t)cY t or any t in some open neighbor-
hood o 0 in C". An unfolding o a multi-germ f" (X, S)-(Y, T) o a holomor-
phic map is a germ o a parametrized family o multi-germs o1 holomor-
phic maps F" (X C, S 0)-.(Y C", T 0) such that F(x, O) (f(x), 0) or
x e X. We say that an unfolding F" (X C’, S 0)(Y C", T 0) o a
multi-germ f’(X, S)-+(Y, T) of a holomorphic map is trivial if there exist
germs o1 t-levels (t e C’) preserving analytic automorphisms G" (XC",
S O).-(X C", S O) and H (Y C, T O)(Y C, T O) with
idx, Hro---idr, such that H,,F,,G---fidc,. We say that a multi-germ
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f: (X, S)-(Y, T) o a holomorphic map is simultaneously stable i any un-
folding of f is trivial.

1.1. Definition. A holomorphic map f: X-+Y between complex mani-
folds is said to be locally stable i, or any point y e Y and any finite subset
Sf-(y), a multi-germ f: (X, S)-(Y, y) is simultaneously stable.

1.2. Definition. A complex analytic subspace Z o a complex manifold
Y is said to be with a locally stable parametrization i

( ) the normal model X o Z is non-singular, and
(ii) the composite map f:-o: X-+Yis locally stable, where,: X-+Z

is the normalization map and t: Z Y is the inclusion map.
From now on let Z be a complex analytic subspace with a locally stable

parametrization o a compact complex manifold Y. For a pair (Y, Z), let

f :-- X-Y be the same as in Definition 1.2. We denote by _q)(f, X, Y)
(resp. _q)(f, X)) the category o germs o amilies o deformations o f: X-Y
with Y varied (resp. with Y fixed), and by _L’(Y, Z) (resp. f’(Z)) the category
o germs of amilies of logarithmic deformations of (Y, Z) (resp. o locally
trivial displacements of Z in Y).

1.3. Theorem. (f X, Y) and _(Y, Z) (resp. )(f X) and .(Z)) are
isomorphic as categories.

Proof. The proof is almost identical with that o Theorem (11.1) in
[8] (----Main theorem in [7]). Although in [8] we consider only locally trivial
displacements of Z in a fixed ambient manifold Y and deformations o f:
X--Y with Y fixed, the proof o Theorem (11.1) in [8] is also valid or loga-
rithmic deformations of a pair (Y, Z) and or deformations o f: X-+Y with
Y varied. Q.E.D.

2. Comparison o infinitesimal deformation spaces. As in the pre-
ceding section, let Z be an analytic subspace with a locally stable parametri-
zation in a compact complex manifold Y, and let f:---on:X-Y be the
composite of the normalization map n: X-Z and the inclusion map : Zc Y.
We denote by Tr the sheaf of holomorphic tangent vector fields on Y, and
by Tr(log Z) the shea o logarithmic tangent vector fields along Z in Y, that
is, the subshea of Tr consisting of the derivations o Or which send the
ideal sheaf of Z in Or into itself. We define a Shea z/r by the ollowing
exact sequence:
(2.1) 0 ;Tr(logZ)-. ;Tr zr ;0,
and Yx/r by the ollowing one:

(2.’2) 0 Tx" f*Tr "x/r "0.
The infinitesimal deformation spaces of logarithmic deformations of a pair
(Y, Z), locally trivial displacements of Z in Y and deformations of a map

f: X.-.Y with Y fixed, are H(Y, Tr(log Z)), H(Z,z/r) and H(X,
respectively. Their obstruction classes belong to H(Y, Tr (log Z)), H(Z,
and H(X, x/r), respectively. As to the infinitesimal deformation space of
a map f: X--+Y with Y varied, there are two spaces H(Tx, Tr, f*Tr) defined
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by Namba in [5] and Ext((9, 2), ()z, Gr)) defined by Flenner in [1].
Here 5’ is an abelian category whose objects are triplets (, ?, ), where
is coherent G-module, a coherent Gr-module and e Homo(f*, ),
and for (, , ), (’, ’, ’) e C, morphism from (, , ) to (’, ’, ’) is
(, ) e Homo(, ’) Homo(, ’) such that the diagram

f*a I* f*a’

is mmutative. The obstruction classes to deformations of f: XY with
Y varied belong M H(Tx, Tr, f*Tr).

2.1. Proposition. (i) zrmf.xr, and so there exists an isomor-

pMsm H’(Z, /) H*(X,/) for iO.
(ii) There exist isomorphisms

H(Tx, Tr, f*Tr) ::H(Y, Tr (log g)) Ex$((, ), (Gx, Gr)) for iO.
Proof. For the proof of (i) we refer to Proposition (9.1) in [8]. Here

we prove (ii). By (2.1), (2..2) and (i) of the proposition, we have the follow-
ing diagram of exact cohomology sequences;

H-(X, x/r) H Jf(X, T) >H’(X, f*T) H’(X,

T(2.3)
H’-’(Z, zr) >H*(Y, Tr(log Z)) H*(Y, Tr) H’(Z,

Since f: XY is an immersion outside a two-codimensional subset of X (cf.
Corollary (4.2) in [8]), it naturally induces a homomorphism H*(Y, Tr(log Z))

H*(X, Tz). This is the map in (2.3). By (2.3) we have an exact
sequence of cohomologies

H’-’(X, f*Tr): )H’(Y, Tr(log 2))a*H’(X, Tx).H’(Y,(2.4)

Here is he eomposi of he homomorhisms"
-’(x,f*)-’(x,) g-(z,) (g,(o)).

On he oher hand here are exae sequences of cohomologies
-(x,Z*) (,,f.) g(x,)(,)(2.)

([g, Proposition (8. 6.9)] and
g-1

(.) o(f ,0)((,), (0, 0))

([6, (.2)]). By comparing (2.) wih (2.g) nd (.6), we have ghe assertion
(ii). .E.9.

By iyajima-Namba-lenner’s heorem on he existence of he Kur-
nishi family of deformations o holomorhie mas ([, ain heorem]), [g,
heorem (8.6.10)], [1, heorem (8.g)]) nd Proposition 2.1, we obin

following.
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2.2. Theorem. For an analytic subspace Z with a locally stable para-
metrization of a compact complex manifold Y, there exists an analytic family--(, 2, , M, O, ) of logarithmic deformations of a pair (Y, Z) (resp. =
(Y M, g, , M, O) of locally trivial displacements of Z in Y) such that

( i ) the characteristic map po" To(M)-H(Y, Tr (log Z)) (resp. ao" To(M)
-+H(Z, zr) is in]ective,

(ii) it is complete at any point t e M (resp. it is maximal at any point
t e M), and

(iii) it is semi-universal at 0 (resp. it is universal at 0).
Furthermore, if H(Y, Tr(log Z))=O (resp. H(Z, z/r)=O), then the

parameter space M is non-singular and the characteristic map po" To(M)-.
H(Y, T (log Z) (resy. ao" To(M)-H(Z, z/r)) is bijective.
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