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Linear Projections of Smooth Projective Threefolds

HEHRE . (Shoji Tsuboi)
Professor Emeritus, Kagoshima University, Japan

E-mail: tsuboif@msb.biglobe.ne.jp

Abstract. In [17] and [18] we have proved formulas which give the Chern numbers of the normalization
X of a hypersurface with ordinary singularities X in P4(C). In this article, in order to obtain concrete
examples of hypersurfaces with ordinary singularities in P#(C), we embed smooth rational threefolds
such as P'(C) x P%(C), P'(C) x P'(C) x P'(C) and P3(C) into higher dimensional projective spaces by
the use of monomials, and project them to 4-dimensional linear subspaces of the projective spaces. We
count numerical invariants of the hypersurfaces with ordinary singularities in P#(C), obtained in this way,
and calculate concrete equations of the hypersurfaces in some cases by the aid of computer. These are
expected to be useful to see that our formulas for the Chern numbers certainly hold.

1 Singularities of the image of a smooth projective threefold by
a generic linear projection

Throughout this article we work over the complex number field C. Let X be an n-dimensional smooth
subvariety of PN(C), and A an (N-m-1)-dimensional linear subspace of PN(C), Y an m-dimensional linear
subspace of PN(C) such that A and Y are situated in general position. We assume that XN A = ), and

80
N-m—-14+n<N&sSn<m+1.

Definition 1.1. For X, A and Y as above, we define the linear projection ma : X — Y of X from A to Y
by
ma(x):=L(x,A)NY (x € X),

where L(x, A) denotes the (N — m)-dimensional linear subspace of PN(C) generated by x and A.

We denote by G(N-m-1,N) the Grassmann variety of (N-m-1)-linear subspaces of PN(C). We regard
A as an element of G(N-m-1,N) and vary it.

If there is a dense open subset U of G(N-m-1,N) such that a linear projection s for any A € U
has a “good” property , we say that a “generic” linear projection 7a has the “good” property. We are

interested in the singularities of the image

ia(X) CY =P™M(C)
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of X ¢ PN(C) by a “generic” linear projection 7 for the case n < m, especially, the case n = m — 1,
that is, the case where 1A (X) is a hypersurface.

Proposition 1.1. When n = 3, for a “generic” A € G(N-5,N), the local analytic equations of A (X)
are given by one of the following:

[ (W) w (simple point)
(ii) zw = 0 (ordinary double point)
(iii) yzw =0 (ordinary triple point)

) (iv) xyzw 0 (ordinary quadruple point)
(v) xy2-22=0 (cuspidal point)
(vi) w(xy?2 —2z2) =0 (stationary point),

\
where (x,y,z,w) is the coordinate on C*.

Definition 1.2. The singularity listed in the proposition above are called ordinary singularities of di-
mension 3.

The statement of Proposition 1.1 can be found in Roth’s book “Algebraic Threefold” (Springer-Verlag,
Berlin, 1955). We can prove this by the use of an analytic version of the theory of “stable map” thanks to
Mather. Originally, “stable map” is a notion in C* category, and is global one, though the global notion
of “stable map” is invalid in complex analytic category. In complex analytic category, instead, we use the
notion of “locally stable holomorphic map”, which is defined as follows: Let f: M — N be a holomorphic
map between complex manifolds, and S a finite subset of M. We denote by f: (M,S) — (N, f(S)) the
multi-germ of a holomorphic map f at S.

Definition 1.3. A multi-germ of a holomorphic map f: (M, S) — (N, f(S)) is defined to be stable if any
deformation (= parametrized unfolding) of it is trivial.

Definition 1.4. A holomorphic map between complex manifolds f : M — N is defined to be locally stable
if for any finite subset S of M, the multi-germ of a holomorphic map f: (M, S) — (N, f(S)) is stable.

With these notation and terminology, we have:

Theorem 1.2. ([10]) Let X, A and Y be the same as in Definition 1.1. If (n,m) belongs to the so-called
“nice range”, then there exists a dense open subset U of G(N-m-1,N) such that, for any A € U, the
linear projection ma : X = Y of X from A to Y is a locally stable holomorphic map.

Here we do not explain what “nice range” is, but we only mention that in the case m =n+1, (n,m)
belongs to the “nice range” if and only if n<14. From this theorem we can derive the following:

Proposition 1.3. Let X be a smooth algebraic threefold embedded in PN(C) (N > 5), and A an (N-5)-
dimensional linear subspace of PN(C), Y a 4-dimensional linear subspace of PN(C) such that A and Y
are situated in general position. Then there exists a dense open subset U of G{(N-m-1,N) such that, for
any A € U, the image of X in Y by the linear projection ma : X = Y from A to Y is a hypersurface with
ordinary singularities in Y.
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Roughly speaking, the proof of Proposition 1.3 proceeds as follows: First note that the pair of integers
(3,4) surely belongs to the so-called “nice range”. Generally, stable holomorphic map germs at a point
are classified by the C-algebra

R = Ox p/f"my ¢(p) (my,¢(p) : the maximal ideal of Oy ¢(p))

associated to f: (X,p) — (Y, f(p)). In the case where dim X = 3 and dim Y = 4, the C-algebra associated
to a stable holomorphic germ at a point is restricted to one of the following:

Ao =CIXl/(x), Ay =Clxl/(x?).

R¢ =~ Ay is the case when f is non-degenerated at x, i.e., the Jacobian df of f has maximal rank at x.
The normal form of the stable map germ f: (C3,0) — (C*,0) with R¢ ~ A, is given by

yrof=x
y2of=x
yzof=x3

Y4 Of=X1X.3,

and if we define
C(Ay) = {x€C3 | Re, ~ A }

where fy denotes the map germ of f at x € C3, then
C(A7):x3 =x3 =0.
The equation of f(C3) ¢ C* at 0 is given by
ysuf — i =0,

which is the so-called Whitney umbrella, or cuspidal point, or pinch point. By this and the fact that a
locally satable holomorphic map is a Thom-Boardman map satisfying condition NC (normal crossing),
we have the proposition above (For details, see [14]). For the precise definition of a Thom-Boardman map
satisfying condition NC (normal crossing), see [4].

2 Chern numbers of the normalization of a hypersurface with
ordinary singularities in P*(C)

Throughout §§2, 3, we fix the notation as follows:

Y :=P*4(C) : the complex projective 4-space,

X : an algebraic threefold with ordinary singularities in Y,

7 : the singular subscheme of X defined by the Jacobian ideal of X,

D : the singular locus of X,

T : the triple point locus of X, which is equal to the singular locus of D,

C : the cuspidal point locus of X, precisely, its closure, since we always consider C contains the

stationary points, .
2q : the quadruple point locus of X,
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I3 : the stationary point locus of X,
Ny : X = X : the normalization of X, _
f:X — Y : the composite of the normaliztion map ny and the inclusion T: X = Y,

J : the scheme-theoretic inverse of T by f,
D, T, C and Xs : the inverse images of D, T, C and XS by f, respectively.

We put
n := deg X (the degree of X in P*(C)), m:= degD, t:=degT, v := degC.

Note that T and C are smooth curves, intersecting transversely at L3, and that the normalization X of X
is also smooth. Calculating by the use of local coordinates, we can easily see the following:

(i) J contains D, and the residual scheme to D in J is the reduced scheme C, ie., J; = Jp ®, Jc,
where Jj, Jp, Jc are the ideal sheaves of ], D and C, respectively (cf. [3], Definition 9.2.1, p.160);

(ii) D is a surface with ordinary singularities, whose singular locus is T,
(iii) D is the double point locus of the map f: X — Y, i.e., the closure of {q € X | #f~'(f(q)) > 2} ;
(iv) the map f;p : D — D is generically two to one, simply ramified at C;

(v) the map fjr : T — T is generically three to one, simply ramified at Ls.

Concerning the Euler number of X, denoted by x(X), we have the following:
Proposition 2.1. ([16], Proposition 2.3)
(2.1) x(X) = n2n?—-n+9) -23n—7)m+6t—4y—c

where ¢ denotes the class of X, i.e., the number of hyperplanes being tangent to X at a point and passing
through a fized generic 2-linear subspace of P*(C).

To prove the proposition above we use a Lefschetz pencil L= Unrepr X on X, consisting of hyperplane
sections of X. We denote by B the base point locus of £, which is an irreducible curve of degree n with
m nodes on X. Let ¢: X — X be the blowing-up along n,; (B), and let £ = {J,cp Xa be the pull-back of

L to X by nx o 0. Then L gives a fibering of X, whose fiber is a smooth surface except over finite points
A1,-++,Ac of P!, Every singular fiber over A (1<ixc) is a surface with only one isolated ordinary double

point. The Euler number of a general fiber X, is given by
x(Xa) =n(n? —4n +6) — (3n — 8)m + 3t — 2y,
wnich is a classical formula for surfaces with ordinary sungularites. From thses facts, (2.1) follows.

The formulas for the Chern numbers of X are as follows:
Theorem 2.2.

[

JX

c3 =x(X) = —nn3=5n? +10n - 10) + (4n? — 150 — 2m + 20)m — (4n — 15)t

+ (n+ 10)y + 5deg [Kx - C] — #5 + 2x(C, O¢) + 4#17.
‘ 3 =-nn-53+6(n->52%m-3(n—5)(nm+3t—7y)
- + (n? —2m)m +5nt — (2n — 5)y + deg [Kx - C] — #L5 + 4#XT.
[ cres = —24x(X, Kx) = —24x(Y, Oy(((n — 5)H] - D)) + 24
- = —(n—4)(n—-3)(n-2)(n—1)+24x(D, 05(n-5)) + 24,

where Kx is a canonical divisor of X.



143

Remark 2.1. As pointed out in [18], the formulas for [, c3 and [, ¢} in [17] are false. This is because
the diagram ’

L
—

C X
o
C Y.

is not Cartesian, since [f~'(C)] = 2[C], and so we cannot apply the excess intersection formula (cf. [3],

Theorem 6.3, p.102) to calculate f*[C]. Hence, the identity
f*[Cl=f[X-[C]-[D-C],

_—
T

on page 299 in [17] is incorrect, and the second identity at (3.26) on the same page in [17] must be
replaced by

[D-Cl =f[X+Ky] - [C] = [Kx - C],

which follows from the double point formula [D] = f*[X + Ky} — [Kx], where Kx and Ky are canonical
divisors of X and Y, respectively.

The most hard part of Theroem 2.2 is the first formula for the Euler number. The class c is nothing
but the degree of the top polar class of X. Thanks to Piene’s formula in [11], calculating the Segre classes
of the singular subscheme | of X, we have

c=(Mm=1Pn—(4n? —=9n —2m + 6)m + (4n — 9)t — (n + 14}y — 5deg [Kx - C] + #Z5 — 2x(C, Og) — 4#LT.

For the precise definitions of polar class and Segre class, see [11] or {3].

3 Examples

The following is an example of a 2-dimensional hypersurface with ordinary singularities in P3(C), named
Steiner surface:
(xy)? + (yz)? + (zx)? + xyzw = 0,

where [x : Y : z: w] is the homogeneous coordinate on P3(C). Its singular locus consists of the three lines
Ao, Ar and A, defined by x =y =0,y = z = 0 and z = x = 0, respectively, which we call the double
curves of it. The Steiner surface has one ordinary triple point [0: 0 : 0 : 1], six ordinary cuspidal points

1:0:0:v2,[1:0:0:=v2,[0:1:0:v2],[0:1:0:=v2),[0:0:1:v2),[0:0:1:—v2], two of
which lie on each of the line A, and no quadruple point. The Steiner surface is obtained as the image of
P3(C) by the composite of the quadratic Veronese map (embedding)

v2ilEo:&1: 8] € P3(C)
— [E§ &3 ES Eor B0k E1Ea) = Ixo i %1 %2 Yo 1yt 1y2) € PP(C)
and the linear projection
T {xXo:X1:%X2: Yo yr:y2) € P3(C)
= (Yo:u1:yz:—(x0+x1+%2)) = (x:y:z:w) € P3(C)
The center of the linear projection 7y is the line
L:yo=y1 =y2=%0+%x1 +x2 =0.
In what follows we try to find out similar examples in 3-dimensional case. First, we recall the formulas

which express multiple-point cycle classes and ramification point cycle classes in_terms of invariants of
X and Y for an appropriately generic morphism f : X — Y between smooth algebraic varieties with
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dimX < dimY, where cycle classes mean equivalence classes in the ring A.X of algebraic cycles on X
modulo rational equivalence. We set

M, = { x € X | there exist T distinct points (possibly infinitely near each other) in f Tfoxe },

and call it the r-fold point locus of f. M, has naturally the structure of a reduced subscheme. We denote
by [M,] the element of A.X determined by M,. We set n =dimX, m =dimY (n < m), and

R:= { x € X | rank(df)y<n —1 },

where df is the Jacobian map of f. R is called the ramification locus of f, or the singular locus of f. R has
naturally subscheme structure; it is defined by the ideal generated by the n-mionors of df : Tx — f*7y,
where Tx and Ty denote the tangent bundles of X and Y, respectively. We denote by [R] the element of

A.X determined by R.

Theorem 3.1. Let X be a smooth algebraic threefold embedded in PN(C) (N > 5), Y a 4-dimensional
linear subspace of PN(C), and mta : X = Y the linear projection of X from an (N — 5)-dimensional linear
subspace A of PN(C) to Y. We denote by X the image of X by ma. If ma is generic, that is, if A
corresponds to a point of a suitable dense open subset of the Grassmann varity G(N-5,N) , then M; is

empty fori>5 and
dimM; =41 (2<i<4).

Furthermore, under the same assumption, we have:

M;] = 7 [X 4 Ky] — Kx,

M) = 51 { IMal? = M- ket (Y) +262(9) + mimanc () — e (v)en () },

Mo = 3 { mama 23] = 3¢1 () - (2UM3) + 6c2(v)[M3] — 661 (v)ea (v) — 12¢3(3) },

where v := 7, Ty — Tx is an element of K(X), called the vertual normal sheaf of 7.

The above theorem is a conclusion derived from multiple-point formulas due to S. L. Kleimen ([6], [7]).

Theorem 3.2. With the same notation and under the same assumption as in Theorem 3.1, R is a smooth
curve (possibly reducible), and
[R] = c2(v).

The fact that R is smooth follows from that ms is a Thom-Boardman map. The last identity in the
theorem above is a conclusion derived from the Porteous formula ([12]).

In the subsequence, we denote by Hp» a generic hyperplane in P*(C), and by Hi. the intersection
of i hyperplanes in general position in P*(C).

dE);iam ]lae 3.1 (Generic projection of Segre threefold): Let s : P1(C) x P?(C) — P5(C) be the map
efined by

[so:si]lx[to:ti:t2] € P'(C)xP?C)
— [soto:sotr:sota:sitoisitiisita) =[xo:x1:%2:Yo:Y1:Y2l € P3(C)

i.e., the Segre map from P'(C) x P%(C) to P>(C). We set
Zy 2 :=s(P'(C) x P%(C)),

which is called Segre threefold. It is a rational normal scroll, and as such is denoted by Xj 1,1, whose
meaning is as follows: We take three points po,p1, P2 in general position in P?(C),and set

Lo == s(P'(C) x po),
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L :=s(P'(C) x p1)
Ly :=s(P(C) x p1).

These are three lines in general position in P°(C). We denote the natural isomorphisms
(/X I_o — Li (1 = ],2)

Then X1 is described as
Si2=J p,o1(p) 02(p),
p€lo

where p, ©1(p), 2(p) denotes the 2-dimensional linear subspace of P>(C), generated by p, @1 (p) and
92(p).

Proposition 3.3. We denote by I, , the image of i, by a generic linear projection from a point
p € P?(C) to P*(C). Then:
degXi,; =3.

Proof: By the definition of s : P'(C) x P?(C) — P3(C),
$*[Zy 2 NHps] = [Hpr x P2]+ [PT x Hp2].

Hence 5 1 ; 2
s*[Z1,2 NH3s] = ([Hpr x PZ + [P" x Hp2])® = 3[Hps x HZ,].

Since Hp:1 % H,Z,Z is a point of P'(C) x P2(C),

J 21,20Hg4.=J Z],zﬂHgs =J S*[ZlyzﬂHgs]=3,
p4 5 Pl x P2

ie., degf;,_z=3. m

P

By Theorem 3.1 and Theorem 3.2, we have:

Proposition 3.4. We denote by f: P'(C) x P2(C) — P*(C) the composite of the Segre map s : P'(C) x
P2(C) — P5(C) and a generic linear projection 1, : P5(C) — P4(C). Concerning the multiple-point loci
and the singular locus of f, we have the following:

(3.1) [M2] = [P! x Hp:]
(3:2) M3] = M4l =0,
(3.3) Rl = [Hp1 x Hp2] + [P! x H3,]

Proposition 3.5. Concerning the various singular loci of X := £1 5 = f(P' x P?), we have the following:

(3.4) deg[D] =1,

(3.5) deg [C] = 2,

(3.6) [T = [£q) = [£5] = 0.
Proof: Since f.[M;] = 2[D], by the projection formula,

3.7) f.(IM2] - f*[HE.]) = 2[D] - [HZ.].
Since

(3.8) f*[Hps] = [Hp1 x P2 + [P x Hp:),
we have

*[Hps]? = ([Hp1 x P3|+ [P! x Hp2])? = 2[Hp1 x Hp2] + [P! x HZ,].
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Hence, by (3.1)

[M3] - f*[Hps]> = [P' x Hp2] - (2[Hp1 x Hp2] + [P! x HZ,))
= Z[le X H|2;2]

Therefore, since Hp1 X H,Z.,,z is a point of P! x P2, by (3.7) we have
[ D1 tpar2 =1,
P4

Similarly, using the fact f.[R] = [C], we can prove (3.5) as follows: By the projection formula,
(3.9) £.([R) - £*[Hps]) = [C] - [Hpa].
By (3.3) and (3.8),
[R]- f*[Hps] = ([Hp1 x Hp2] +[P! x HZ;]) - ([Hps x P?] + [P! x Hp2])
= [Hp1 x H3,] 4+ [Hp1 x H2,] = 2[Hp1 x H2,]

Therefore, since Hp1 x H,Z,Z is a point of P! x P2, by (3.9),

J [T - [Hpe] = J R] - £ [Hpa] = 2.
p4 P! xP2
[ |

By Proposition 3.3, Proposition 3.4, Proposition 3.5, Proposition 2.1 and the formula for fx c3 in
Theorem 2.2, we have:

Proposition 3.6. Concerning the class ¢ of X and the Euler Poincaré characteristic x(C, Og) of the
cuspidal point locus (smooth curve) C of X, we have the following:

c=0, x(C,0g) =1,

The concrete equation of £, ; can be calculated as follows: The Grobner basis for the homogeneous ideal
of £y, in P3(C) is given by

XoY1 —X1Yo, XoYz —X2Yo, X1Yz —X2Yg.
Hence the point p:=[1:0:0:0:1:0] is not included in X; ;. We consider the projection 7, from the
point p to the hyperplane
H: X0 = 0.
This projection 7, is given by
[xo:x1:%X2:Yo:y1:y2]l € P>(C)
— (ax)p—(alp)x =xop —x =[0:%x1:%x2:Yo : Y1 — %0 :y2) € H.

where a = [1:0:0:0:0: 0] is the normal vector of the hypersurface H, and ( | ) denotes the inner
product. We regard H as P*(C) and denote its homogeneous coordinates by [z : 21 : 27 : 23 : z4). Then
M, 05 : P1(C) x P?(C) — P#(C) is given by

[so:s1]xto:ty:t2] € PY(C)x P?(C)

—{zo:2z1:22:23 :24] = [sotq 1 sot2 i s1to:s1ty —soto : sit2] € P4(C).

We set _
X := (1, 0 s)(P'(C) x P%(C)).
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Computing the Grobner basis for the homogeneous ideal of X in P4(C) by the aid of computer, we obtain
the defining equation of X as follows: '

X: zzzf +z3(z124) — zozﬁ =0.

The singular loci of X are:

D: {21 =Z4=0},
C: {z1 =Z4=0}ﬂ{z§—|-4zozz=0}.

Example 3.2 (Generic projection of rational scroll X; 7, in n P3(C)): Let v, : P'(C) — P?(C) be the
quadratic Veronese map (embedding), s : P2(C) x PZ( ) P3(C) the Segre map, and consider the
composition

vaxid
—

P'(C) x P%(C) P2(C) x P3(C)——P3(C).

The image of this map is a rational normal scroll, and is denoted by X3 > _27_ whose meaning is as follows:
We take three points po,p1, P2 in general position in the second factor P , and set

Lo := s(P?(C) x po),

Ly :==s(P*(C) x p1),

L, := s(P2(C) x pa).

These are three 2-dimensional linear subspaces in general position in P3(C). Furthermore, we set

Co := (s o (v2 x 1d))(P'(C) X po),
Cy := (s o (v2 x 1d))(P'(C) x p1),
Cz:=(so (v xid))(P'(C) x p2).

Each C; is a quadric in L;. We denote the natural isomorphisms by

©i:Co—Ci (i=1,2).

Then X3 ;2 is described as

X222= ] p,o1(p), 02(p),
peCo

where p, @1(p), @2(p) denotes the 2-dimensional linear subspace of P¥(C), generated by p, ¢1(p) and
©2(p). We denote by X; 7, the image of X; 22 by a generic linear projection to a 4-dimensional linear
subspace of P&(C). The center of this projection is a 3-dimensional linear subspace of P®(C). By Theorem
3.1, Theorem 3.2, Proposition 2.1, the formula for fx ¢3 in Theorem 2.2 and Remark 3.1 below, we have

the following concerning the degrees of Xz 2,2 itself and the various singular loci of it:

Proposition 3.7.
deg[X2221 =6, deg[D]l=10, deg(Tl =4, deg[Cl=8, #[Zql=0, #I[Zs] =12,
[D] =4[Hp1 x Hpz2 + P' x Hp2], [T] = 6[Hp1 x Hp2] +3[P' x HZ,],
[Cl =6[Hp1 x Hp2] +3[P" x HZ,], [Eq) =0, #[Is]=12
c=0, X(-(—:» Of) =

We are now going to find out the concrete equation of X; 2 2. We recall that the map

g:=so(vy0id):P'(C) x P*(C) — P¥(C)
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is defined by

[s0:s1] x [to: 7 : t2] € P'(C) x P?(C)
- [s%to : s%to :8oS1to sg‘q : s%tl :sos1tq: s%tz : s%tz 1 sps1ta]
=[Xp:1X1:%2:Yo:Y1:Y2:20:21:22] € Pé(C),

and X3 2.2 = g(P'(C) x P?(C)).
First, we choose a generic linear projection 7 ,, : P8(C) — P>(C) such that:

(i) /\Z)OX222=0,
(ii) AyNixo=x1 =% =0=Ag)Nyo=y1=y2=0=A)N{zo=21 =2, =0} =

Let 7t ,, : P2(C) — P?(C) be the map associated to the following matrix:
100 00 100 0)

00 -110 0 00 -1
o0 -100 -110 O
o1 0 00 0 00 -1
00 0 01 -1 00 -1
oo -100 0 01 0

Then the conditions (i) and (ii) are satisfied, and f' :=7A ,, 09: P'(C) x PZ(C) — P>(C) is given by

a = soto —sosity,
a; = -—spsSito+ Sot1 — sps1t2,
) a; = —sos1to—sos1t1 + S(Z)tz,
a3 = S%to —8pS1t2,
a = s%t1 —sos1ty1 —sosita,
[ a5 = —sosito + s?tz,

where [ag : @y : a2 : a3 : as : as] is the homogeneous coordinate on P?(C). Computing the Grébner basis
for the homogeneous ideal of X} , , :=f'(P'(C) x P#(C)) C P*(C),
we can see that the point

=[0:1:0:1:0:0]

is not included in X/2,2.2- We consider the projection 7, from the point p to the hyperplane

H: (pla) =a; + a3 =0.
The projection 7, is given by

a=[ap:aj:az:a3:a4:as] € PP(C)
—(pla)p + (plp)a = —(a1 + a3}p + 2a
=[2ap:a71 —a3:2az:—aj +as:2aq4:2as] € H.

We regard H as P*(C) and take [ap : a1 : a2 : a4 : as] as its homogeneous coordinate. We denote
[ap:aq:az:a4:as] by [bo:bq:by:bs:bal, then m, : P°(C) — P4(C) is given by

bo =2ap, by =a;—a3, bz=2ay,
b3 = 2(14, by = 2(15



Then f:= 7, o (1A ,, © @) : P'(C) x P#(C) — P*(C) is given by

We set

(b = 2(s3to—sositi),
b1 = —sgsito — s¥to + s3ty,

< by = 2(—spsito —soSi1t1 + Sétz),
by = 2(sit; —sosits — sosit2),

[ ba = 2(—sosito + sTta),

X222 :=f(P'(C) x P?(C)).
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Computing the Grobner basis for the homogeneous ideal of X3, in P#(C) by the aid of computer,
we obtain the defining equation of X; ; , as follows:

(3.10) F

11b3bs — 14b3b b3 — 64b3b?bs — 40b3b3bs — 26b3b, b3 +4b3b;bobs
+24b3b3b,b3 + 26b3b3bs — 30b3by bZbs — 20bebIb3bs — 26b3b3bs + 12bob bibs
+11bob3bs — 3b3b2 + 62b3b1b2 + 104bZb3b3 + 40bob3bs + 19b3b,b3 — 84b%bb, b3
~84bob?b,b2 + 8b3b2b3 + 66byb1b3b3 + 20b2b3b3 — 33beb3b3 — 32b1b3b2
+11b3b% — 11b3b3 — 34b2b b3 — 20bob?b3 + 11b3b,b3 + 34bob1b,b3 + 20b2b, b3
+8bob3b3 — 2b1b3b3 — 7b3b3 + 4b3b% — 2bob1 b5 — 8bob,b3 + 4b3b3 + bob3 — by b3
—22b%b1by + 28b3b3by + 128b3b3 by + 80bobtby — 11bgb2bs + 66b3b b2 by
+56b3b2b, b, — 8bob3byby + 26b3bibs — 56b3b b3b, + 36beb2b3bs + 40b3b3by
—26b3b3b, + 82bob1b3by — 4b3b3by + 26bob3bs — 34byb3bs — 11b3bs + 8b3bsby
—20b3b1bsbs — 112b2b3bsb, — 80bob3bsby + 11b3bybsby — 62b3b1bybsby
—8bob?bybsby + 40b3b,bsbs — 45b3b3bsbs + 2bob1b3bsbs + 36bTbsbsbs
+9bob3bsby + 22b,b3bsbs + 7bibsbs — 9b3bZbs 4+ 82b2b1bibg + 92bebZb3b,
+31b2b2b3by — 78beb1b2b%bs — 20b%b,b3by + 23bobZb3bs + 28b1b5blby
—35b3b2bs — 9b3b3bs — 52bobyb3bs — Sbobabibs + 36b1byb3ba + 15b3b3 by
+8bobibs — 8b,b3by + 22b3b2 — 44b3b1 b3 — 120b%b2b3 — 48bob3bZ ~ 60b3b, b3
+18b3b1b,bZ + 64bobib, b3 + 55b3b3b2 — 60bobb3b3 — 4b?b3b3 — 52byb3b2
+60b1b3b2 + 31b5b2 — 13b3b3b2 + 110b3b1b3b2 + 112bob2b3bZ + 79b3b,b3b3
—128bob by b3b3 — 24b?b,bsb2 — 48bob3bsbZ + 40b1b3b3bZ — 14b3b3b3
—15b3b3b3 — 66bob1b3b3 — 2bob,b3b2 + 44b1byb3bs + 25b3b5b5 + 11bob3b3
—~11b,b3b2 + 5b3b3 + 20b3b1b3 + 20beb3b3 + 5bZb2b3 — 30bob1b2b3 + 2bob3b3
—2b;b3b3 — 17b3b3 — 10b3b3b3 — 20bobyb3b3 + 10bob2bsb3 + 10b1b,b3b3
+1103b3b3 + 5byb2b3 — 5b,b3b3 + 5b3b4.

( 134 terms, compared with ,_1+4Cq =10 Cs = 210)

In order to obtain the generators of the ideal for the cuspidal point locus C of the map f := 7, o
(A, ©9): P'(C) x P2(C) — P*(C), we compute all 4-minors my,--- , mzs of the Jacobian matrix

a(bo»bth) b3yb4)
9(so0,81,t0,t1,12)

of the map f. Among the 4-minors, there exist

ms

mio

8s3 (2s3s1to + 253s3to + sTto + sgts — s3s1tr + 35Tty + sosdty + sty + s§ta — sdsity — sositz)

85(2) (sgto — s%s%to -~ Zsos‘,‘to — s?to + sgslh — sgs%‘q - sgs?h — 25351 t2 + Zs%s?tz + ZSos?tz)
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Note that thses expressions are linear with respect to, t1,t2. If we put A = s1/sp, then

gls_g = (A+22 + At + (1 =A+ A2+ A3 + A%t + (1 =A% = A%)ty,
(o

2 = (=M= —W)to+ (A=A =Nty = (A= 20° — W)z,
0

We solve these simultaneous linear equations with respect to to, t1,t2, then we have

(3.11) [to:ty:t2]
= MEB=3A+AZ+2A3 +20%) : = (14302 +403 —20* +2%) : 1 = A =A% + 2A% + 20° + A9
w(3p =3 + 3 +2p% +2p)  —p(u 5+ 3p3 +4p? —2u+ 1:pé — 5 —pt 423 +2u 41,

where p = 1/A. Substituting (3.11) to all the 4-minors m;, 1<i<25, we can make sure that (3.11) is a
parametric representation of the cuspidal point locus C of the map f. Thus C is a non-singular rational

curve, and so X(C,0¢g) = 1. _
The generators of the ideal for the singular subscheme | of X; ; > are
oF oF oF
dby’ 0by’ " dbs’
Pulling back these by the map f, we obtain the generators for the ideal of the scheme theoretic inverse

J of T by f. From the fact that 95 = Ip ®9, Jc, where X = P1(C) x P?(C), and Jy, Jp, Jc are the ideal
sheaves of J, D and C, respectively, it follows that the equation G of the double point locus D of f is
defined by the following equation:

G = 11s§td + 25s3s1td + 18s3s3t] + 5sosTtg — 7satdt) + 6s3s1t3ty + 2s3s2t3t,
+5s0s3t3t — 1655t3t2 + 8s3s1t3t? — 1552524312 + 1750s3t2t3 + 5sFt3t2 — 5sftots
+16s3s1tot3 — 24s353tot3 + 135053 tot] + 5s3s1tF — 10s3s7t%
+6sos3tT — st} — 265§ty — 375351131, — 325252t
—12s0s3t3t2 — 5sTt3ts + 2sgt3tity + 13s3s1t3t1t, — 4853533t t,
+5s0s3t2ti1ty — Ssttitity + 6shtotdty + 34s3sitotity
—498%8%’(01’.%1’.2 + ]9Sos?tot%t2 - lss?tot%tz + 95881 t]”tz
—21s3s?tdty + 21sos3tdty — 8stdty + 2655t3t3 + 48s3s1t3t2
+14s3s2t3t3 4 1250531313 — 65Ft3t2 — 15s8tot 1t 4+ 37s3s1tot t3
+ssitotits 4 35s0sTtot 3 — 225Ttot1t3 — 2654tots — 23s3s1t0t3
—5s3t2t2 + 6s3s1t3t3 — 2453531313 + 36s0s3t7t3 — 11sTt3t3
—9sdsttot] + 22s0s3tot3 — Ssttotd + 6sgtit3 — 7sdsit1t3 — 305357t t3
+27s083t1t3 — 5sTtits + 11313 + 7s3s1t3 — 16535213 + 550533,

(69 terms, compared with 5C4 xg C4 =5 x 15 = 75)

Since the triple point locus T of f is nothing but the singular locus of D, the generators of the ideal for
the triple point locus C of f are generated by
0
612) 36 3G 3G 3G G
0so 0sq Oty oty ot,

In order to obtain the stationary point locus }_ s of f, we substitute the parametric representation of the
cuspidal point curve C in (3.11) into (3.12) since }_s = CN T, equate these to zero, and solve them by
the aid of computer. Then it turns out that the stationary point locus }_ s of f consists of the 12 points
corresponding to the roots of following equation in A:

S5A'2 + 10! + 8AT0 — 2407 — 76A8 — 48A7 + 155A6 + 3AA5 — 259A% + 3223 + 11502 —68A 4+ 8 = 0.
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Example 3.3(Generic projection of the image of P'(C) x P'(C) x P'(C) in P7(C) by the Segre map):
Let s: P'(C) x P'(C) x P'(C) — P7(C) be the map defined by
[so:s1] % [to:ti]l x [ug:u;l € P'(C)xP'(C)xP(C)
— [Sotouo tsotows fsotiup @ sotiuy i sitoup : sitour fsitiup s1t1u1]
=[xo:%1:%2:%3:Yo :Y1:Y2:y3] € P’(C)
i.e., the Segre map from P'(C) x P'(C) x P'(C) to P7(C). We set
Y111 :=s(PY(C) x P'(C) x P'(C)).

We denote by X; 1,1 the image of Z;,1,1 by a generic linear projection to a 4-dimensional linear subspace
of P7(C). The center of this projection is a 2-dimensional linear subspace of P7(C). By the same way to

rqvefl?troposition 3.7, we have the following concerning the degrees of X1 7,7 itself and various singular
oci of it:
Proposition 3.8.

deg[Z1111 =6, degD] =9, deg(Tl=4, deg(Cl=12, #[£ql=1, #[Zs]=16,

D] =3[Hp1 x P! x PP+ P" x Hpr x P + P! x P! x Hpi],

[T} =4[Hp1 x Hp1 x P' + P! x Hp1 x Hp1 + Hp1 x P! x Hp1],

[C] = 4[Hp1 x Hp1 x P1+ P! x Hp1 x Hp1 + Hp1 x P! x Hp1],

#[Zql =4, #[Is]=16,

Cc= 4, X(é, O‘f) =0.

This example might be interesting, because a quadruple point exists.

Example 3.4 (Steiner threefold): Let v; : P3(C) — P?(C) be the map defined by

[Eo:81:82:83] € P3(C)
— (€5 &7 1 €31 3 1 B0k 1 Eok2 1 EoE3 1 E18 1 E183: E283]
=[xo:X1:%X2:%3: Yo Y1 :Y2:Y3:Y4:ys) € P7(C),
i.e., the quadratic Veronese map (embedding). We set
X := v, (P3(C)).

We denote by X the image of X by a generic linear projection to a 4-dimensional linear subspace of P?(C),

and call it Steiner threefold. The center of this projection is a 4-dimensional linear subspace of P?(C).
By the same way to prove Proposition 3.7, we have the following concerning the degrees of the Steiner
threefold itself and various singular loci of it:

Proposition 3.9.

deg[X] =8, deg[D] =20, deg[T] =20, deg[C]=20, #[Zq] =5, #I[Zs] =40,
deg[D] =10, deg[T] =30, deg[C]=10, #[Zq]=20, #[Zs]=40,
c=4, x(C,0g)=-10.
Remark 3.1. The number of stationary points X5 in Proposition 3.7, Proposition 3.8 and Proposition
3.9 can be calculated by the identity
[T =f*[X]- T—[D] - [T] — [Zs] + [Zd]
in Proposition 1.12 in [17].

~_We have not fet succeeded in calculating the concrete equations for Xy 11 in Example 3.3 and X
in Example 3.4. It sometimes happens that we obtain the equations of 3-dimensional hypersurfaces in

P#(C), which have other kinds of multiple-points than ordinary and stationary quadruple points.
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