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Abstract. In [17] we have proved formulas which give the Chern numbers of the normalization X

of a hypersurfase with ordinary singularities X in P4(C), though we have no concrete examples such
hypersurafces whose structures are known. In this article we report some results of our trial to find out
concrete examples of hypersurfases with ordinary singularities in P4(C), which are expected to be useful
to see that our formulas for the Chern numbers certainly hold. As a result, it turns out that the formulas
for

∫
X

c3 and
∫

X
c3

1 in [17] are incorrect. We give the formulas amended correctly.

1 3-dimensional hypersurfaces with ordinary singularities

Throughout this article we work over the complex number field C. We begin with recalling the definiton
of 3-dimensional hypersurfaces with ordinary singularities.

Definition 1.1. ([13]) An irreducible hypersurface X in a 4-dimensional complex manifold Y is called a
3-dimensional hypersurface with ordinary singularities if it is locally isomorphic to one of the following
germs of hypersurface at the origin of the complex 4-space C4 at every point of X:

(i) w = 0 (simple point) (ii) zw = 0 (ordinary double point)
(iii) yzw = 0 (ordinary triple point) (iv) xyzw = 0 (ordinary quadruple point)

(v) xy2 − z2 = 0 (cuspidal point) (vi) w(xy2 − z2) = 0 (stationary point),

where (x, y, z,w) is the coordinate on C4.

Examples of 3-dimensional hypersurfaces with ordinary singularities are obtained by projecting smooth
threefolds, i.e., smooth algebaric varieties of dimension 3, embedded in a complex projective space PN(C)

(N ≥ 5) to its 4-dimensional linear subspace by a generic linear projection ([10], [14]). In the subsequence
we will explain what the word “generic” means and why this fact holds. Let X be an n-dimensional smooth
subvariety of PN(C), and Λ an (N-m-1)-dimensional linear subspace of PN(C), Y an m-dimensional linear
subspace of PN(C) such that Λ and Y are situated in general position. We assume that X ∩ Λ = ∅, and
so

(N − m − 1) + n < N ⇐⇒ n < m + 1.

Definition 1.2. For X, Λ and Y as above, we define the linear projection πΛ : X → Y of X from Λ to Y

by
πΛ(x) := L(x,Λ) ∩ Y (x ∈ X),

where L(x,Λ) denotes the (N − m)-dimensional linear subspace of PN(C) generated by x and Λ.
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We denote by G(N-m-1, N) the Grassmann variety of (N-m-1)-linear subspaces of PN(C). We consider
Λ as an element of G(N-m-1,N) and vary it.

Next, we give the definition of a locally stable holomorphic map. Let f : M → N be a holomorphic
map between complex manifolds, and S a finite subset of M. We denote by f : (M,S) → (N, f(S)) the
multi-germ of a holomorphic map f at S.

Definition 1.3. A multi-germ of a holomorphic map f : (M,S) → (N, f(S)) is defined to be stable if any
deformation (= parametrized unfolding) of it is trivial .

Definition 1.4. A holomorphic map between complex manifolds f : M → N is defined to be locally stable
if for any finite subset S of M, the multi-germ of a holomorphic map f : (M,S) → (N, f(S)) is stable.

With these notation and terminology, we have:

Theorem 1.1. ([10]) Let X, Λ and Y be the same as in Definition 1.2. If (n,m) belongs to the so-called
“nice range”, then there exists a dense open subset U of G(N-m-1,N) such that, for any Λ ∈ U, the
linear projection πΛ : X → Y of X from Λ to Y is a locally stable holomorphic map.

Here we do not explain what “nice range” is, but we only mention that in the case m = n+ 1, (n,m)

belongs to the “nice range” if and only if n<14. From this theorem we can derive the following:

Proposition 1.2. Let X be a smooth algebraic threefold embedded in PN(C) (N ≥ 5), and Λ an (N-5)-
dimensional linear subspace of PN(C), Y a 4-dimensional linear subspace of PN(C) such that Λ and Y

are situated in general position. Then there exists a dense open subset U of G(N-m-1,N) such that, for
any Λ ∈ U, the image of X in Y by the linear projection πΛ : X → Y from Λ to Y is a hypersurface with
ordinary singularities in Y.

Roughly speaking, the proof of this proposition proceeds as follows: First note that the pair of integers
(3, 4) surely belongs to the so-called “nice range”. Generally, stable holomorphic map germs at a point
are classified by the C-algebra

Rf := OX,p/f∗mY,f(p) (mY,f(p) : the maximal ideal of OY,f(p))

associated to f : (X, p) → (Y, f(p)). In the case where dim X = 3 and dimY = 4, C-algebras associated to
stable holomorphic germs at a point are only one of the following:

A0 = C[[x]]/(x), A1 = C[[x]]/(x2).

Rf ' A0 is the case when f is non-degenerated at x, i.e., the Jacobian df of f has maximal rank at x.
The normal form of the stable map germ f : (C3, 0) → (C4, 0) with Rf ' A1 is given by

y1 ◦ f = x1

y2 ◦ f = x2

y3 ◦ f = x2
3

y4 ◦ f = x1x3,

and if we define
C(A1) :=

{
x ∈ C3 | Rfx

' A1

}
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where fx denotes the map germ of f at x ∈ C3, then

C(A1) : x1 = x3 = 0.

The equation of f(C3) ⊂ C4 at 0 is given by

y3y2
1 − y2

4 = 0,

which is the so-called Whitney umbrella, or cuspidal point , or pinch point . By this and the fact that a
locally satable holomorphic map is a Thom-Boardman map satisfying condition NC (normal crossing),
we have the proposition above (For details, see [14]). For the precise definition of a Thom-Boardman map
satisfying condition NC (normal crossing), see [4].

2 Chern numbers of the normalization of a hypersurface with

ordinary singularities in P4(C)

Throughout §§2, 3, we fix the notation as follows:

Y := P4(C) : the complex projective 4-space,
X : an algebraic threefold with ordinary singularities in Y,
J : the singular subscheme of X defined by the Jacobian ideal of X,
D : the singular locus of X,
T : the triple point locus of X, which is equal to the singular locus of D,
C : the cuspidal point locus of X, precisely, its closure, since we always consider C contains the

stationary points,
Σq : the quadruple point locus of X,
Σs : the stationary point locus of X,
n

X
: X → X : the normalization of X,

f : X → Y : the composite of the normaliztion map n
X

and the inclusion ι : X ↪→ Y,
J : the scheme-theoretic inverse of J by f,
D, T , C and Σs : the inverse images of D, T , C and Σs by f, respectively.

We put

n := degX (the degree of X in P4(C)), m := degD, t := deg T , γ := degC.

Note that T and C are smooth curves, intersecting transversely at Σs, and that the normalization X of X
is also smooth. Calculating by use of local coordinates, we can easily see the following:

(i) J contains D, and the residual scheme to D in J is the reduced scheme C, i.e., IJ = ID ⊗IX
IC,

where IJ, ID, IC are the ideal sheaves of J, D and C, respectively (cf. [3], Definition 9.2.1, p.160);

(ii) D is a surface with ordinary singularities, whose singular locus is T ,

(iii) D is the double point locus of the map f : X → Y, i.e., the closure of {q ∈ X | #f−1(f(q)) ≥ 2} ;

(iv) the map f|D : D → D is generically two to one, simply ramified at C;

(v) the map f|T : T → T is generically three to one, simply ramified at Σs.

Concerning the Euler number of X, denoted by χ(X), we have the following:
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Proposition 2.1. ([16], Proposition 2.3)

χ(X) = n(2n2 − 7n + 9) − 2(3n − 7)m + 6t − 4γ − c(2.1)

where c denotes the class of X, i.e., the number of hyperplanes being tangent to X at a point and passing
through a fixed generic 2-linear subspace of P4(C).

To prove the proposition above we use a Lefschetz pencil L =
⋃

λ∈P1 Xλ on X, consisting of hyperplane
sections of X. We denote by B the base point locus of L, which is an irreducible curve of degree n with
m nodes on X. Let σ : X̃ → X be the blowing-up along n−1

X
(B), and let L̃ =

⋃
λ∈P X̃λ be the pull-back of

L to X̃ by nX ◦ σ. Then L̃ gives a fibering of X̃, whose fiber is a smooth surface except over finite points
λ1, · · · , λc of P1. Every singular fiber over λi (1<i<c) is a surface with only one isolated ordinary double
point. The Euler number of a general fiber X̃λ is given by

χ(X̃λ) = n(n2 − 4n + 6) − (3n − 8)m + 3t − 2γ,

wnich is a classical formula for surfaces with ordinary sungularites. From thses facts, (2.1) follows.

The formulas for the Chern numbers of X are as follows:
Theorem 2.2.∫

X

c3 = χ(X) = −n(n3 − 5n2 + 10n − 10) + (4n2 − 15n − 2m + 20)m − (4n − 15)t

+ (n + 10)γ + 5deg [KX · C] − #Σs + 2χ(C,O
C
) + 4#Σq.∫

X

c3
1 = −n(n − 5)3 + 6(n − 5)2m − 3(n − 5)(nm + 3t − γ)

+ (n2 − 2m)m + 5nt − (2n − 5)γ + deg [KX · C] − #Σs + 4#Σq.∫
X

c1c2 = −24χ(X,KX) = −24 χ(Y,OY([(n − 5)H] − D)) + 24

= −(n − 4)(n − 3)(n − 2)(n − 1) + 24 χ(D, O
D

(n − 5)) + 24,

where KX is a canonical divisor of X.

Remark 2.1. The formulas for
∫

X
c3 and

∫
X

c3
1 in [17] are false. This is because the diagram

C
ι

−−−−→ Xyf|C

yf

C −−−−→
ι

Y.

is not Cartesian, since [f−1(C)] = 2[C], and so we cannot apply the excess intersection formula (cf. [3],
Theorem 6.3, p.102) to calculate f∗[C]. Hence, the identity

f∗[C] = f∗[X] · [C] − [D · C],

on page 299 in [17] is incorrect, and the second identity at (3.26) on the same page in [17] must be
replaced by

[D · C] = f∗[X + KY ] · [C] − [KX · C],

which follows from the double point formula [D] = f∗[X + KY ] − [KY ], where KX and KY are canonical
divisors of X and Y, respectively.

The most hard part of Theroem 2.2 is the first formula for the Euler number. The class c is nothing
but the degree of the top polar class of X. Thanks to Piene’s formula in [11], calculating the Segre classes
of the singular subscheme J of X, we have

c = (n − 1)3n − (4n2 − 9n − 2m + 6)m + (4n − 9)t − (n + 14)γ − 5deg [KX · C] + #Σs − 2χ(C,OC) − 4#Σq.

For the precise definitions of polar class and Segre class, see [11] or [3].
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3 Linear projections of rational threefolds

The following is an example of a 2-dimensional hypersuraface with ordinary singularities in P3(C), named
Steiner surface:

(xy)2 + (yz)2 + (zx)2 + xyzw = 0,

where [x : y : z : w] is the homogeneous coordinate on P3(C). Its singular locus consists of the three lines
Λ0, Λ1 and Λ2 defined by x = y = 0, y = z = 0 and z = x = 0, respectively, which we call the double
curves of it. The Steiner surface has one ordinary triple point [0 : 0 : 0 : 1], six ordinary cuspidal points
[1 : 0 : 0 :

√
2], [1 : 0 : 0 : −

√
2], [0 : 1 : 0 :

√
2], [0 : 1 : 0 : −

√
2], [0 : 0 : 1 :

√
2], [0 : 0 : 1 : −

√
2], two of which

lie on each of the line Λi, and no quadruple point. The Steiner surface is obtained as the image of the
composite of the quadratic Veronese map (embedding)

v2 : [ξ0 : ξ1 : ξ2] ∈ P2(C)→ [ξ2
0 : ξ2

1 : ξ2
2 : ξ0ξ1 : ξ0ξ2 : ξ1ξ2] = [x0 : x1 : x2 : y0 : y1 : y2] ∈ P5(C)

and the linear projection

πL : (x0 : x1 : x2 : y0 : y1 : y2) ∈ P5(C)→ (y0 : y1 : y2 : −(x0 + x1 + x2)) = (x : y : z : w) ∈ P3(C)

The center of the linear projection πL is the line

L : y0 = y1 = y2 = x0 + x1 + x2 = 0.

In what follows we try to find out similar examples in 3-dimensional case. First, we recall the formulas
which express multiple-point cycle classes and ramification point cycle classes in terms of invariants of
X and Y for an appropriately generic morphism f : X → Y between smooth algebraic varieties with
dimX < dim Y, where cycle classes mean equivalence classes in the ring A·X of algebraic cycles on X
modulo rational equivalence. We set

Mr :=
{

x ∈ X | there exist r distinct points (possibly infinitely near each other) in f
-1

f(x)

}
,

and call it the r-fold point locus of f. Mr has naturally the structure of a reduced subscheme. We denote
by [Mr] the element of A·X determined by Mr. We set n = dim X, m = dim Y (n < m), and

R :=
{

x ∈ X | rank(df)x<n − 1

}
,

where df is the Jacobian map of f. R is called the ramification locus of f, or the singular locus of f. R has
naturally subscheme structure; it is defined by the ideal generated by the n-mionors of df : τX → f∗τY ,
where τX and τY denote the tangent bundles of X and Y, respectively. We denote by [R] the element of
A·X determined by R.

Theorem 3.1. Let X be a smooth algebraic threefold embedded in PN(C) (N ≥ 5), Y a 4-dimensional
linear subspace of PN(C), and πΛ : X → Y the linear projection of X from an (N − 5)-dimensional linear
subspace Λ of PN(C) to Y. We denote by X the image of X by πΛ. If πΛ is generic, that is, if Λ
corresponds to a point of a suitable dense open subset of the Grassmann varity G(N-5,N) , then Mi is
empty for i ≥ 5 and

dim Mi = 4 − i (2<i<4).

Furthermore, under the same assumption, we have:

[M2] = π∗
Λ[X + KY ] − KX,

[M3] =
1

2!

{
[M2]2 − [M2] · π∗

Λc1(Y) + 2c2(ν) + π∗
ΛπΛ∗c1(X) − c1(ν)c1(X)

}
,

[M4] =
1

3!

{
π∗

ΛπΛ∗2![M3] − 3c1(ν) · (2![M3]) + 6c2(ν)[M2] − 6c1(ν)c2(ν) − 12c3(ν)
}
,

where ν := π∗
ΛτY − τX is an element of K(X), called the vertual normal sheaf of πΛ.
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The above theorem is a conclusion derived from multiple-point formulas due to S. L. Kleimen ([6], [7]).

Theorem 3.2. With the same notation and under the same assumption as in Theorem 3.1, R is a smooth
curve (possibly reducible), and

[R] = c2(ν).

The fact that R is smooth follows from that πΛ is a Thom-Boardman map. Tha last identity in the
theorem is a conclusion derived from the Porteous formula ([12]).

In the subsequence, we denote by HPn a generic hyperplane in Pn(C), and by Hi
Pn the intersection

of i hyperplanes in general position in Pn(C).

Example 3.1 (Generic projection of Segre threefold): Let s : P1(C) × P2(C) → P5(C) be the map
defined by

[s0 : s1] × [t0 : t1 : t2] ∈ P1(C) × P2(C)→ [s0t0 : s0t1 : s0t2 : s1t0 : s1t1 : s1t2] = [x0 : x1 : x2 : y0 : y1 : y2] ∈ P5(C)

i.e., the Segre map from P1(C) × P2(C) to P5(C). We set

Σ1,2 := s(P1(C) × P2(C)),

which is called Segre threefold . It is a rational normal scroll , and as such is denoted by X1,1,1, whose
meaning is as follows: We take three points p0, p1, p2 in general position in P2(C),and set

L0 := s(P1(C) × p0),

L1 := s(P1(C) × p1)

L2 := s(P1(C) × p1).

These are three lines in general position in P5(C). We denote the natural isomorphisms

ϕi : L0 → Li (i = 1, 2).

Then Σ1,2 is described as
Σ1,2 =

⋃
p∈L0

p,ϕ1(p), ϕ2(p),

where p,ϕ1(p), ϕ2(p) denotes the 2-dimensional linear subspace of P5(C), generated by p,ϕ1(p) and
ϕ2(p).

Proposition 3.3. We denote by Σ1,2 the image of Σ1,2 by a generic linear projection from a point
p ∈ P5(C) to P4(C). Then:

deg Σ1,2 = 3.

Proof: By the definition of s : P1(C) × P2(C) → P5(C),

s∗[Σ1,2 ∩ HP5 ] = [HP1 × P2] + [P1 × HP2 ].

Hence
s∗[Σ1,2 ∩ H3

P5 ] = ([HP1 × P2] + [P1 × HP2 ])3 = 3[HP1 × H2
P2 ].

Since HP1 × H2
P2 is a point of P1(C) × P2(C),∫

P4

Σ1,2 ∩ H3
P4 =

∫
P5

Σ1,2 ∩ H3
P5 =

∫
P1×P2

s∗[Σ1,2 ∩ H3
P5 ] = 3,

i.e., deg Σ1,2 = 3.

By Theorem 3.1 and Theorem 3.2, we have:
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Proposition 3.4. We denote by f : P1(C) × P2(C) → P4(C) the composite of the Segre map s :
P1(C)×P2(C) → P5(C) and a generic linear projection πp : P5(C) → P4(C). Concerning the multiple-
point loci and the singular locus of f, we have the following:

[M2] = [P1 × HP2 ](3.1)

[M3] = [M4] = 0,(3.2)

[R] = [HP1 × HP2 ] + [P1 × H2
P2 ](3.3)

Proposition 3.5. Concerning the various singular loci of X := Σ1,2 = f(P1 ×P2), we have the following:

deg [D] = 1,(3.4)

deg [C] = 2,(3.5)

[T ] = [Σq] = [Σs] = 0.(3.6)

Proof: Since f∗[M2] = 2[D], by the projection formula,

f∗([M2] · f∗[H2
P4 ]) = 2[D] · [H2

P4 ].(3.7)

Since

f∗[HP4 ] = [HP1 × P2] + [P1 × HP2 ],(3.8)

we have

f∗[HP4 ]2 = ([HP1 × P2] + [P1 × HP2 ])2 = 2[HP1 × HP2 ] + [P1 × H2
P2 ].

Hence, by (3.1)

[M2] · f∗[HP4 ]2 = [P1 × HP2 ] · (2[HP1 × HP2 ] + [P1 × H2
P2 ])

= 2[HP1 × H2
P2 ].

Therefore, since HP1 × H2
P2 is a point of P1 × P2, by (3.7) we have∫

P4

[D] · [HP4 ]2 = 1.

Similarly, using the fact f∗[R] = [C], we can prove (3.5) as follows: By the projection formula,

f∗([R] · f∗[HP4 ]) = [C] · [HP4 ].(3.9)

By (3.3) and (3.8),

[R] · f∗[HP4 ] = ([HP1 × HP2 ] + [P1 × H2
P2 ]) · ([HP1 × P2] + [P1 × HP2 ])

= [HP1 × H2
P2 ] + [HP1 × H2

P2 ] = 2[HP1 × H2
P2 ]

Therefore, since HP1 × H2
P2 is a point of P1 × P2, by (3.9),∫

P4

[C] · [HP4 ] =

∫
P1×P2

[R] · f∗[HP4 ] = 2.

By Proposition 3.3, Proposition 3.5, Proposition 2.1 and the formula for
∫

X
c3 in Theorem 2.2, we

have:
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Proposition 3.6. Concerning the class c of X and the Euler Poincaré characteristic χ(C,OC) of the
cuspidal point locus (smooth curve) C of X, we have the following:

c = 0, χ(C,OC) = 1.

The concrete equation of Σ1,2 can be calculated as follows: The Gröbner basis of the homogeneous ideal
of Σ1,2 in P5(C) is given by

x0y1 − x1y0, x0y2 − x2y0, x1y2 − x2y1.

Hence the point p := [1 : 0 : 0 : 0 : 1 : 0] is not included in Σ1,2. We consider the projection πp from the
point p to the hyperplane

H : x0 = 0.

This projection πp is given by

[x0 : x1 : x2 : y0 : y1 : y2] ∈ P5(C)→ (a|x)p − (a|p)x = x0p − x = [0 : x1 : x2 : y0 : y1 − x0 : y2] ∈ H.

where a = [1 : 0 : 0 : 0 : 0 : 0] is the normal vector of the hypersurface H, and ( | ) denotes the inner
product. We regard H as P4(C) and denote its homogeneous coordinates by [z0 : z1 : z2 : z3 : z4]. Then
πp ◦ s : P1(C) × P2(C) → P4(C) is given by

[s0 : s1] × [t0 : t1 : t2] ∈ P1(C) × P2(C)→ [z0 : z1 : z2 : z3 : z4] = [s0t1 : s0t2 : s1t0 : s1t1 − s0t0 : s1t2] ∈ P4(C).

We set
X := (πp ◦ s)(P1(C) × P2(C)).

Computing the Gröbner basis of the ideal of X in P4(C) by the aid of computer, we obtain the defining
equation of X as follows:

X : z2z2
1 + z3(z1z4) − z0z2

4 = 0.

The singular loci of X are:

D :
{

z1 = z4 = 0

}
,

C :
{

z1 = z4 = 0

}
∩

{
z2

3 + 4z0z2 = 0

}
.

Example 3.2 (Generic projection of rational scroll X2,2,2 in P8(C)): Let v2 : P1(C) → P2(C) be the
quadratic Veronese map (embedding), s : P2(C) × P2(C) → P8(C) the Segre map, and consider the
composition

P1(C) × P2(C)
v2×id

−−−−→P2(C) × P2(C)
s

−−−−→P8(C).

The image of this map is a rational normal scroll , and is denoted by X2,2,2, whose meaning is as follows:
We take three points p0, p1, p2 in general position in the second factor P2(C), and set

L0 := s(P2(C) × p0),

L1 := s(P2(C) × p1),

L2 := s(P2(C) × p2).

These are three 2-dimensional linear subspaces in general position in P8(C). Furthermore, we set

C0 := (s ◦ (v2 × id))(P1(C) × p0),
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C1 := (s ◦ (v2 × id))(P1(C) × p1),

C2 := (s ◦ (v2 × id))(P1(C) × p2).

Each Ci is a quadric in Li. We denote the natural isomorphisms by

ϕi : C0 → Ci (i = 1, 2).

Then X2,2,2 is described as
X2,2,2 =

⋃
p∈C0

p,ϕ1(p), ϕ2(p),

where p,ϕ1(p), ϕ2(p) denotes the 2-dimensional linear subspace of P8(C), generated by p,ϕ1(p) and
ϕ2(p). We denote by X2,2,2 the image of X2,2,2 by a generic linear projection to a 4-dimensional linear
subspace of P8(C). The center of this projection is a 3-dimensional linear subspace of P8(C). By Theorem
3.1, Theorem 3.2, Proposition 2.1, the formula for

∫
X

c3 in Theorem 2.2 and Remark 3.1 below, we have
the following concerning the degrees of X2,2,2 itself and the various singular loci of it:

Proposition 3.7.

deg [X2,2,2] = 6, deg [D] = 10, deg [T ] = 4, deg [C] = 8, #[Σq] = 0, #[Σs] = 12,

c = 0, χ(C,O
C
) = 1

Example 3.3 (Steiner threefold): Let v2 : P3(C) → P9(C) be the map defined by

[ξ0 : ξ1 : ξ2 : ξ3] ∈ P3(C)→ [ξ2
0 : ξ2

1 : ξ2
2 : ξ2

3 : ξ0ξ1 : ξ0ξ2 : ξ0ξ3 : ξ1ξ2 : ξ1ξ3 : ξ2ξ3]

= [x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3 : y4 : y5] ∈ P9(C),

i.e., the quadratic Veronese map (embedding), Λ a 4-dimensional linear subspace of P9(C), and πΛ the
linear projection from Λ to a 4-dimensional linear subsapce Y of P9(C), situated in twisted position with
respect to Λ. We set

X := v2(P3(C)), X := πΛ(X).

Let us call this X Steiner threefold . By the same way to prove Proposition 3.7, we have the following
concerning the degrees of the Steiner threefold itself and various singular loci of it:

Proposition 3.8.

deg [X] = 8, deg [D] = 20, deg [T ] = 20, deg [C] = 20, #[Σq] = 5, #[Σs] = 40,

c = 4, χ(X,O
X
) = −10

Remark 3.1. The number of stationary points Σs in Proposition 3.7 and Proposition 3.8 can be calcu-
lated by the identity

f∗[T ] = f∗[X] · T − f∗[T ] − [Σs] + [Σq]

in Proposition 1.12 in [17].

It is difficult to calculate the concrete equations for X2,2,2 in Example 3.2 and X in Example 3.3 even
if we use computer, though it sometimes happens that we obtain the concrete equations of 3-dimensional
hypersurfaces in P4(C), which have other kinds of multiple-points than ordinary and stationary quadruple
points.
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(1978)

[12] Porteous I. R., Simple singularities of maps, Liverpool singularities symposium I, Lecture Note in
Math.192, 286-307 (1971)

[13] Roth L., Algebraic threefold, Springer-Verlag, Berlin (1955)

[14] Tsuboi S., Deformations of locally stable holomorphic maps and locally trivial displacements of ana-
lytic subvarieties with ordinary singularities, Science Reports of Kagoshima University No.35, 9-90
(1986)

[15] Tsuboi S., On certain hypersurfaces with non-isolated singularities in P4(C), Proc. Japan Acad.
79A, No. 1, 1-4 (2003)

[16] Tsuboi S., The Euler number of the normalization of an algebraic threefold with ordinary singulari-
ties, Banach Center Publications 65, Polish academy of Sciences, 273-289 (2004)

[17] Tsuboi S., The Chern numbers of the normalization of an algebraic threefold with ordinary singular-
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