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Abstract. By a classical formula due to Enriques, the Euler number χ(X) of the non-

singular normalization X of an algebraic surface S with ordinary singularities in P 3(C) is given

by χ(X) = n(n2−4n+6)−(3n−8)m+3t−2γ, where n = the degree of S, m = the degree of

the double curve (singular locus) DS of S, t = the cardinal number of the triple points of S, and

γ=the cardinal number of the cuspidal points of S. In this article we shall give a similar formula

for an algebraic threefold with ordinary singularities in P 4(C) which is free from quadruple

points (Theorem 4.1).

1. Preliminaries. We begin with recalling some definitions.

Definition 1. ([1]) An irreducible hypersurface S in the complex projective 3-space
P 3(C) is called an algebraic surface with ordinary singularities if it is locally isomorphic
to one of the following germs of hypersurface at the origin of the complex 3-space C3 at
every point of S:{

(i) z = 0 (simple point) (ii) yz = 0 (ordinary double point)
(iii) xyz = 0 (ordinary triple point) (iv) xy2 − z2 = 0 (cuspidal point),

where (x, y, z) is the coordinate on C3.

Definition 2. ([6]) An irreducible hypersurface T in the complex projective 4-space
P 4(C) is called an algebraic threehold with ordinary singularities if it is locally isomorphic
to one of the following germs of hypersurface at the origin of the complex 4-space C4 at
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2 S. TSUBOI

every point of T :
(i) w = 0 (simple point) (ii) zw = 0 (ordinary double point)
(iii) yzw = 0 (ordinary triple point) (iv) xyzw = 0 (ordinary quadruple point)
(v) xy2 − z2 = 0 (cuspidal point) (vi) w(xy2 − z2) = 0 (stationary point),

where (x, y, z, w) is the coordinate on C4.

It is known that every complex projective surface (resp. threefold) is birationally
equivalent to an algebraic surface (resp. threefold) with ordinary singularities.

Next we give the definition of the polar classes of an r-dimensional subvariety Xr in
a complex projective space Pn(C). Denote by U the open subset of Xr consisting of all
simple points of X . For a given linear (n−r+k−2) dimensional subspace L(k) of Pn(C),
we let Mk(U) denote the locus of points x ∈ U such that the tangent space TxX of X at
x intersects L(k) in a space at least k − 1 dimension.

Definition 3. The closure Mk of Mk(U) in X is called the k-th polar locus of X .

Mk has a natural reduced scheme structure and, for a general L(k), Mk has codimen-
sion k in X . Moreover, for such L(k), the rational equivalent class of the cycle defined by
Mk does not depend on L(k) (cf. [5]).

Definition 4. This class denoted by [Mk] is called the k-th polar class of X . The
degree µk of Mk is called the k-th class. The top class µr is called the class of X .

Now we give the definition of the Segre class of a closed subscheme X of a scheme Y .
We denote by I the ideal sheaf of X in Y and put

S· := Σ∞
k=0Ik/Ik+1,

which is a graded sheaf of OX -algebras on X . To S· we associate two schemes over X :
the cone of S·

C := Spec(S·), π : C → X ;

and the projective cone P (C) to X in Y by

P (C) := Proj(S·), p : P (C) → X.

C is called the normal cone to X in Y , denoted by CXY , and P (C) the projective normal
cone to X in Y . On P (C) there is a canonincal line bundle, denoted by OC(1). Let z be
a variable, S·[z] the graded algebra whose nth graded piece (S·[z])n is

Sn ⊕ Sn−1z ⊕ · · · ⊕ S1zn−1 ⊕ S0zn.

The corresponding cone is denoted by C ⊕ 1. The cone

P (C ⊕ 1) = Proj(S·[z]), q : P (C ⊕ 1) → X

is called the projective completion of C. The element z in (S·[z])1 determines a regular
section of OC⊕1(1) on P (C ⊕ 1) whose zero-scheme is canonically isomorphic to P (C).
The complement to P (C) in P (C ⊕ 1) is canonically isomorphic to C.

Definition 5.The Segre class of X in Y , denoted by s(X, Y ), is the class in the
graded Chow group A∗X of X defined by the formula
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s(X, Y ) := q∗(Σi≥0 c1(OC⊕1(1))i ∩ [P (C ⊕ 1)]).

Note that s(X, Y ) is a birational invariant, which means that if f : Y ′ → Y be a
morphism of pure-dimensional schemes, X ⊂ Y a closed subscheme, X ′ = f−1(X) the
inverse image scheme, then the Segre class of X ′ in Y ′ pushes forward to the Segre class
of X in Y . If the normal cone CXY is a vector bundle N , then s(X, Y ) = c(N)−1 ∩ [X ]
where c(N)−1 denotes the total inverse Chern class of N (cf. [2], Chapter 4).

Finally, we give the definitions of regular embeddings and local complete intersection
morphisms of schemes.

Definition 6. We say a closed embedding ι : X → Y of schemes is a regular embedding
of codimension d if every point in X has an affine neighborhood U in Y , such that if A

is the coordinate ring of U , I the ideal of A defining X , then I is generated by a regular
sequence of length d.

If this is the case, the conormal sheaf I/I2, where I is the ideal sheaf of X in Y ,
is a locally free sheaf of rank d. The normal bundle to X in Y , denoted by NXY , is
the vector bundle on X whose shef of sections is dual to I/I2. Note that the normal
bundle NXY is canonically isomorphic to the normal cone CXY for a (closed) regular
embedding ι : X → Y since the canonical map from Sym(I/I2) to S· := Σ∞

k=0Ik/Ik+1

is an isomorphism (cf. [2], Appendix B, B.7).

Definition 7. A morphism f : X → Y is called a local complete intersection mor-
phism of codimension d if f factors into a (closed) regular embedding ι : X → Y of some
constant codimension e, followed by a smooth morphism p : P → Y of constant relative
dimension d + e.

2. The existence of a good linear pencil of hyperplane sections. Throughout
this section we denote by X an algebraic threefold with ordinary singularities of degree n

in the complex projective 4-space P 4(C), by D the double surface of X , i.e., the singular
locus of X , by T the triple points locus of X , by C the cuspidal point locus of X , by
Σs the stationary point locus of X . Let m, t, γ be the degrees of D, T , C, respectively.
Let P∞ be a 2-dimensional linear subspace of P 4(C) such that C∞ := P∞ ∩ X is an
irreducible curve with ordinary double points in P∞ � P 2(C). Let P be a 1-dimensional
linear subspace of P 4(C) situated in twisted position with respect to P∞, i.e., the linear
subspace L(P∞, P ) generated by P∞ and P is equal to P 4(C). Let π : X \ C∞ → P

be the linear projection with center C∞, i.e., π(x) := Hx ∩ P for x ∈ X \ C∞, where
Hx = L(x, P∞) is the hyperplane generated by x and P∞. We put Xλ := Hλ ∩ X for
λ ∈ P and L :=

⋃
λ∈P Xλ. Then L is a linear system on X with the base point locus

Bs(L) = C∞. Let f : X1 → X be the normalization map and L̃ :=
⋃

λ∈P X̃λ the
pull-back of L to X1.

Theorem 2.1 If we take P∞ sufficiently general, there exists a finite set {λ1, · · · ,
λc} of points of P such that

(i) X̃λ is non-singular for λ with λ �= λi (1<i<c), and
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(ii) X̃λi is a surface with only one isolated ordinary double point which is contained in
X1 \ f−1(C∞) for any i with 1<i<c,

where c is the class of X.

Proof. We consider the Gauss map

Φ : X −− > P 4(C)∨

defined by

Φ(p) =
[ ∂F

∂x0
(p) :

∂F

∂x1
(p) :

∂F

∂x2
(p) :

∂F

∂x3
(p) :

∂F

∂x4
(p)
]

(1)

for p ∈ X , where F is the homogeneous polynomial defining X in P 4(C), [x0 : x1 : x2 :
x3 : x4] the homogeneous coordinate on P 4(C), and P 4(C)∨ the dual projective space of
P 4(C). Φ is a rational map, which is not defined on the singular locus D of X . Let X be
the closure in X × P 4(C)∨ of the graph of Φ. We denote by π1 : X → X the morphism
induced by the projection to the first factor, and π2 : X → P 4(C)∨ the one induced by
the projection to the second factor. We call π1 : X → X the Nash blow-up of X . Note
that the rational map Φ can be extended to X and X is minimal among the varieties with
such property. In our case, since X is a hypersurface, X coincides with the the blow-up
of the Jacobian ideal of X ([4], Remark 2, p.300). We denote by X∨ the image of X by
π2 : X → P 4(C)∨, and call it the dual variety of X . The dimension of X∨ is not less
than 1, nor greater than 3 ([3], Example 15.22., p.196).

We are now going to define an algebraic subset B in P 4(C)∨, whose points correspond
to hyperplanes in P 4(C) being in bad positions in some sense at their intersecting points
with the cuspidal point locus C, or stationary point locus Σs of X . Let p be a point
of C, or Σs. Then there is an open neighborhood U of p and a complex analytic local
coordinats (x, y, z, w) with center p such that the defining equation of X is given by one
of the following:

xy2 − z2 = 0(2)

w(xy2 − z2) = 0.(3)

Let (ζ1, ζ2, ζ3, ζ4) be a linear affine coordinate with center p, and H a hyperplane passing
through p, defined by the equation

i=4∑
i=1

aiζi = 0 (ai ∈ C, 1<i<4).(4)

We say H is in a bad position at the point p, if the coefficients of the equation (4) satisfy
the following two conditions:

4∑
i=1

ai
∂ζi

∂y
(0) = 0,(5)

4∑
i=1

ai
∂ζi

∂w
(0) = 0.(6)
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We define Bp to be the algebraic subset of P 4(C)∨ consisting of all points which corre-
sponds to hyperplanes in P 4(C) passing through p and being in a bad position at p in
the sense defined above. We define an algebraic subset B of P 4(C)∨ by

B :=
⋃
p∈C

Bp(7)

Here we should note that the stationary points are included in C, and since dimBp = 1,
the codimension of B is greater than 1. We choose a line L∗ in P 4(C)∨ which satisfies
all of the following conditions:

L∗ ∩
{
X∨ \ Φ(Xsm

)
} = ∅,(8)

L∗ ∩ (X∨)sing = ∅,(9)

L∗ ∩ B = ∅,(10)

L∗ intersects transversely with Φ(Xsm) \ (X∨)sing,(11)

where Xsm denotes X \D, the simple point locus of X , and (X∨)sing the singular point
locus of X∨. This is always possible because all the codimensions of X∨ \ Φ(Xsm),
(X∨)sing and B are greater than 1 in P 4(C)∨. Note that the cardinal number of the
set L∗ ∩ {Φ(Xsm) \ (X∨)sing} is nothing but the class of X . We denote by Hλ the hy-
perplane in P 4(C) corresponding to each λ ∈ L∗. We put Xλ := X ∩ Hλ and consider
the linear pencil

L =
⋃

λ∈L∗
Xλ

of hyperplane sections of X . We are now going to show that the assertions (i) and (ii) of
the proposition hold for the pull-back L̃ =

⋃
λ∈L∗ X̃λ of L to the normal model X1 of X

by the normalization map f : X1 → X .
The assertion (i): Let {λ1, · · · , λc} be all of the distinct points of L∗ ∩ {Φ(Xsm) \

(X∨)sing}, and λ a point L∗ with λ �= λi (1<i<c). Then λ �∈ X∨. This means that Hλ is
not tangent to X at any point of Xsm, and not a limit of tangent hyperplanes to Xsm.
Hence we infer that X̃λ is non-singular at every point of X1 \ f−1(C). Therefore what we
have to do is to show that X̃λ is non-singular at f−1(p) for any point p ∈ Hλ ∩C. In the
subsequence we shall show this fact only when p is a statinary point, since the proof for
a cuspidal point is more easy. Assume p is a cuspidal point of X and p ∈ Hλ. We take a
complex analytic local coordinate (x, y, x,w) with center p such that the defining equation
of X is given by the equation (3). We also take a linear affine coordinate (ζ0, ζ1, ζ2, ζ3)
with center p and assume that the defining equation of Hλ is given by the equation (4).
We rewrite the equation (4) as

Ax + By + Cz + Dw = 0,(12)

where A,B, C and D are complex analytic functions defined in a neighborhood of p.
f−1(p) is two points, say q1, q2, where the normalization map f : X1 → X is given as
follows:

f1 : (u1, v1, t1) → (u2
1, v1, u1v1, t1) = (x, y, z, w),

f2 : (u2, v2, t2) → (u2, v2, t2, 0) = (x, y, z, w).



6 S. TSUBOI

Here (ui, vi, ti) (i = 1, 2) is a complex analytic local coordinate with center qi. Then the
pull-backs of the defining equation of Hλ in (12) by fi (i = 1, 2) are given by

A∗
1 u2

1 + B∗
1 v1 + C∗

1 u1v1 + D∗
1 t1 = 0, and(13)

A∗
2 u1 + B∗

2 v2 + C∗
2 t2 = 0(14)

where A∗
i , B∗

i , C∗
i and D∗

i (i = 1, 2) are the pull-backs of A, B, C and D by the map
fi. The equations above give the defining equations of X̃λ at q1 and q2, respectively.
Concerning the equation (13), if B∗

1(0) �= 0 or D∗
1(0) �= 0, then X̃λ is non-singular at q1.

Assume B∗
1(0) = D∗

1(0) = 0 to the contrary, then B(0) = D(0) = 0. Since

A(0)x + B(0)y + C(0)z + D(0)w = 0

is the equation of the embedded tangent space to Hλ at p in terms of the local coordinate
(x, y, z, w), and since Hλ is defined by the equation (4), we have

4∑
i=0

ai
∂ζi

∂y
(0) = B(0) = 0, and

4∑
i=0

ai
∂ζi

∂w
(0) = D(0) = 0.

On the other hand, since λ �∈ B, this is because of the condition (10), we have
4∑

i=0

ai
∂ζi

∂y
(0) �= 0, or

4∑
i=0

ai
∂ζi

∂w
(0) �= 0.

This is a contradiction. Therefore we conclude that B∗
1(0) �= 0 or D∗

1(0) �= 0, and so X̃λ

is non-singular at q1. Concerning the equation (14), if A∗
2(0) = B∗

2 (0) = C∗
2 (0) = 0, then

A(0) = B(0) = C(0) = 0. This means the equation of the embedded tangent space to Hλ

at p with respect to the local coordinate (x, y, z, w) is w = 0, that is, Hλ is tangent to the
hypersurface w = 0 at p. But this is a contradiction, because, since λ �∈ X∨, Hλ is not a
limit of tangent hyperplanes to X in P 4(C) at simple points of X . Therefore we conclude
that at least one of A∗

2(0), B∗
2(0) and C∗

2 (0) is not zero, and so X̃λ is non-singular at q2.
The assertion (ii): From the same reasoning as in the proof of the assertion (i) it

follows that X̃λi is non-singular at every point of f−1(Dλi) where Dλi = Xλi ∩D. Hence
it suffices to show that Xλi has only one isolated ordinary double point on Xλi ∩ Xsm.
By the manner of choosing the line L∗ in P 4(C)∨, the hyperplane Hλi is tangent to X

at only one point, say q, of Xsm. Therefore Xλi is non-singular at all but one point q

of Xλi ∩ Xsm. To prove that Xλi has an isolated ordinary double point at q, we assume
that the homogeneous coordinate [x0 : x1 : x2 : x3 : x4] of q is [1 : 0 : 0 : 0 : 0] and Hλi

is defined by x4 = 0. We put ζi = xi/x0 (1<i<4), and use this linear affine coordinate
(ζ1, · · · , ζ4) in the subsequent arguments. Then X is defined by F (1, ζ1, ζ2, ζ3, ζ4) = 0, q

is the origin (0, · · · , 0), and Hλi is defined by ζ4 = 0. Since the tangent hyperplane to X

at q is the hyperplane Hλi : ζ4 = 0, we have

∂F

∂ζi
(1, 0, · · · , 0) = 0 (1<i<3)(15)

∂F

∂ζ4
(1, 0, · · · , 0) �= 0.(16)



EULER NUMBER OF THREEFOLD 7

Because of (16), there is an analytic function φ(ζ1, ζ2, ζ3) of the variables ζ1, ζ2, ζ3 defined
in a neighborhood of the origin, which satisfies the following:

φ(0, 0, 0) = 0,(17)

F (1, ζ1, ζ2, ζ3, φ(ζ1, ζ2, ζ3)) ≡ 0 (locally).(18)

This means that the defining equation of X in a neighborhood of q is given by

ζ4 = φ(ζ1, ζ2, ζ3)(19)

By the same reasoning as before, we have

∂φ

∂ζi
(0, 0, 0) = 0 (1<i<3)(20)

Hence φ is expresed as

φ =
∑

1<i, j<3

∂2φ

∂ζi∂ζj
(0) ζiζj + O(3)(21)

If we regard (ζ1, ζ2, ζ3) as a local coordinate on Hλi , Xλi is defined by φ(ζ1, ζ2, ζ3) = 0
in Hλi . Therefore, if we prove

det
( ∂2φ

∂ζi∂ζj
(0)
)
�= 0(22)

then we can conclude that, after suitable change of local coordinates, the defining equation
of Xλi will become

u(ζ1, ζ2, ζ3)(ζ2
1 + ζ2

2 + ζ2
3 ) = 0

in a neighborhood of the origin in Hλi , where u(ζ1, ζ2, ζ3) is a non-vanishing analytic
function. This proves the assertion (ii) holds. To prove (22), we evaluate the Hessian
det(∂2F/∂xi∂xj) of the homogeneous polynomial F at q = [1 : 0 : 0 : 0 : 0].

First we mention some remarks about det(∂2F/∂xj∂xj(1, 0)), where and in what
follows we write (1, 0) in stead of (1, 0, 0, 0, 0) for short. From the Euler identity

4∑
i=0

xi
∂F

∂xi
= n F (n = degF ),(23)

it follows that
4∑

j=0

xj
∂2F

∂xi∂xj
= (n − 1)

∂F

∂xi
(0<i<4).(24)

If x0 �= 0, by use of (24) and (23), we can derive

det
( ∂2F

∂xixj

)
=
(n − 1

x0

)2
∣∣∣∣∣∣∣∣∣∣∣

n
n-1F

∂F
∂x1

· · · ∂F
∂x4

∂F
∂x1

∂2F
∂x2

1
· · · ∂2F

∂x1∂x4

...
... · · ·

...
∂F
∂x4

∂2F
∂x4∂x1

· · · ∂2F
∂x2

4

∣∣∣∣∣∣∣∣∣∣∣
.(25)
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Therfore, since F (1, 0) = 0 and (∂F/∂xi)(1, 0) = 0 (1<i<3) (cf. (15)), we have

det
( ∂2F

∂xixj
(1, 0)

)
= (n − 1)2

( ∂F

∂x4
(1, 0)

)2

det
( ∂2F

∂xixj
(1, 0)

)
1<i,j<3

(26)

Here we need to recall that Φ(q) = λ does not belong to (X∨)sing because of the condition
(9). This means the Gauss map Φ defined by (1) gives a biregular morphism between X

and X∨ in a neighborhood of q. Therefore the right-hand-side of (26) is not zero, and so
we have

det
( ∂2F

∂xixj
(1, 0)

)
1<i,j<3

�= 0(27)

since (∂F/∂x4)(1, 0) �= 0 (cf. (16)). On the other hand, derivating the equation (18) twice
with respect to the variables ζ1, ζ2, ζ3 and substituting 0 for all ζi, we have

det
( ∂2F

∂xixj
(1, 0)

)
1<i,j<3

= −
( ∂F

∂x4
(1, 0)

)3

det
( ∂2φ

∂ζiζj
(1, 0)

)
(28)

Since (∂F/∂x4)(1, 0) �= 0, by (28) and (27) we have

det
( ∂2φ

∂ζiζj
(1, 0)

)
�= 0

as required. This completes the proof of the theorem.

In what follows we assume that P∞ is sufficiently general so that Theorem 2.1 holds.

Lemma 2.2 With the notation in Proposition 2.1, we have the following:

(i) C̃∞ := f−1(C∞) is a non-singular curve,
(ii) L̃ :=

⋃
λ∈P X̃λ is a linear system on X1 with the base point locus Bs(L̃) = C̃∞, and

(iii) for λ, µ ∈ P with λ �= µ, X̃λ and X̃µ intersect transversely along C̃∞.

Proof. We take an affine coordinate neighborhood U of P 4(C) with U ∩ P∞ �= ∅,
and work on this neighborhood. Let (ζ1, ζ2, ζ3, ζ4) be a linear affine coordinate on U . We
may assume that

(a) P∞ ∩ T = ∅ and P∞ ∩ C = ∅,
(b) P∞ and X intersect transversely at every non-singular point of X, and(29)

(c) P∞ and D intersect transversely.

Let P∞ = H0 ∩ H1 where H0 and H1 are hyperplanes in P 4(C), and let ϕi be a linear
function which defines Hi on U for i = 1, 2. Note that the linear system L̃ :=

⋃
λ∈P X̃λ

is defined by αf∗ϕ0 + βf∗ϕ1 (α, β ∈ C) where f∗ϕi (i = 1, 2) denotes the pull-back
of ϕi by the normalization map f : X1 → X . Therefore the assertion (ii) is trivial. By
the assumption (29), (b), the assertions (i) and (iii) also trivially hold at q = f−1(p)
for a non-singular point p of X , so we will prove that the assertions (i) and (iii) hold at
q ∈ f−1(p) for p ∈ D ∩ U . We assume that X is defined by XY = 0 with respect to
some complex analytic local coordinate (X, Y, Z, W ) with center p, and assume that the
normaliztion map f is given by

(u, v, t) → (0, u, v, t) = (X, Y, Z, W ),
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where (u, v, t) is a complex analytic local coordinate with center q := f−1(p). The Jaco-
bian matrix of f∗ϕ0, f

∗ϕ1 with respect to (u, v, t) at q is given as follows:

∂(f∗ϕ0, f
∗ϕ1)

∂(u, v, t)
(q)

(30)

=


4∑

i=1

∂ζi

∂Y
(p)

∂ϕ0

∂ζi
(p),

4∑
i=1

∂ζi

∂Z
(p)

∂ϕ0

∂ζi
(p),

4∑
i=1

∂ζi

∂W
(p)

∂ϕ0

∂ζi
(p)

4∑
i=1

∂ζi

∂Y
(p)

∂ϕ1

∂ζi
(p),

4∑
i=1

∂ζi

∂Z
(p)

∂ϕ1

∂ζi
(p),

4∑
i=1

∂ζi

∂W
(p)

∂ϕ1

∂ζi
(p)


On the other hand, by the assumption (29), (c),

∣∣∣∣∣∣∣
∂ϕ0

∂Z
(p)

∂ϕ0

∂W
(p)

∂ϕ1

∂Z
(p)

∂ϕ1

∂W
(p)

∣∣∣∣∣∣∣ �= 0.

Hence,

∣∣∣∣∣∣∣∣∣∣

4∑
i=1

∂ζi

∂Z
(p)

∂ϕ0

∂ζi
(p),

4∑
i=1

∂ζi

∂W
(p)

∂ϕ0

∂ζi
(p)

4∑
i=1

∂ζi

∂Z
(p)

∂ϕ1

∂ζi
(p),

4∑
i=1

∂ζi

∂W
(p)

∂ϕ1

∂ζi
(p)

∣∣∣∣∣∣∣∣∣∣
�= 0.(31)

By (30) and (31), we conclude {∂(f∗ϕ0, f
∗ϕ1)/∂(u, v, t)}(p) has the maximal rank. From

this it follows that C̃∞ is non-singular at q. Furthermore, if [α : β] �= [α′ : β′] as a point
of P1(C), then αβ′ − α′β �= 0, so

∂(f∗ϕ0, f
∗ϕ1)

∂(u, v, t)
(q) and

∂(αf∗ϕ0 + βf∗ϕ1, α′f∗ϕ0 + β′f∗ϕ1)
∂(u, v, t)

(q)

have the same rank. Hence {∂(αf∗ϕ0 + βf∗ϕ1, α′f∗ϕ0 + β′f∗ϕ1)/∂(u, v, t)}(q) has also
the maximal rank. This shows that the assertion (iii) holds at q as required. This com-
pletes the proof of the lemma.

Let σ : X̂1 → X1 be the blowing-up along C̃∞ := f−1(C∞), and L̂ :=
⋃

λ∈P X̂λ the
proper inverse of L̃ :=

⋃
λ∈P X̃λ. Then L̂ gives a fibering of X̂1 over P � P 1(C), which

we denote by π : X̂1 → P . Let S = {λ1, · · · , λc} and X̂1

∗
= X̂1−π−1(S). From the exact

Borel-Moore homology sequence determined by the space, the closed subspace, and its
complement, it follows that

χ(X̂1) = χ(X̂1

∗
) + χ(π−1(S)).(32)
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It is clear that

χ(π−1(S)) =
c∑

i=1

χ(X̂λi).(33)

Since X̂1

∗
→ P − S is locally trivial (as a differential fiber space), it follows from the

spectral sequence of Leray for this fiber space that

χ(X̂1

∗
) = χ(X̂λ)χ(P − S),(34)

where X̂λ denote a generic fiber of X̂1

∗
→ P − S. By the same reason as before, we have

χ(P ) = χ(P − S) + c.(35)

Comparing (32), (33), (34) and (35), we have

χ(X̂1) = χ(P 1(C))χ(X̂λ) + Σc
j=1(χ(X̂λj ) − χ(X̂λ))

= 2χ(X̂λ) − c.

The second equality above follows from the fact that a topological 2-cycle vanishes when
λ → λj for j = 1, · · · , c. We put Ê := σ−1(C̃∞). Then, since X̂1 \ Ê � X1 \ C̃∞,

χ(X̂1) − χ(X1) = χ(Ê) − χ(C̃∞)

= χ(P 1(C))χ(C̃∞) − χ(C̃∞)

= χ(C̃∞)

Hence,

χ(X1) = χ(X̂1) − χ(C̃∞) = 2χ(X̂λ) − χ(C̃∞) − c = 2χ(X̃λ) − χ(C̃∞) − c.(36)

Since C∞ is a curve whose degree is equal to n with m ordinary double points in P∞ �
P 2(C), the genus g(C̃∞) is given by

g(C̃∞) =
1
2
(n − 1)(n − 2) − m.

Hence,

χ(C̃∞) = 2 − 2g(C̃∞) = 2 − (n − 1)(n − 2) + 2m.(37)

Note that Xλ is a surface with ordinary singularities in Hλ � P 3(C) of degree n, whose
numerical characteristics related to its singularitis are as follows:

the degree of its double curve Dλ = m

#{triple points of Xλ} = t, #{cuspidal points of Xλ} = γ.

Therefore, by the classical formula,

χ(X̃λ) = n(n2 − 4n + 6) − (3n − 8)m + 3t − 2γ(38)

By (36), (37) and (38), we have the following:

Proposition 2.3

χ(X1) = 2n(n2 − 4n + 6) − 2(3n − 8)m + 6t − 4γ
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− 2 + (n − 1)(n − 2) − 2m − c

= n(2n2 − 7n + 9) − 2(3n − 7)m + 6t − 4γ − c

3. The computation of the class of an algebraic threefold with ordinary
singularities in P 4(C). Throughout this section we denote a rational equivalence class
of an algebraic cycle, say α, by [α], and denote the intersection class of two algebraic
cycle classes, say [α] and [β], by α · β. We refer to the following theorem from [5].

Theorem 3.1 ([5], Theorem (2.3)) Let Xn be a hypersurface of degree d in Pn+1.
Then its k-th polar class is given by

[Mk] = [(d − 1)c1(L)]k ∩ [X ] − Σk−1
i=0

(
k

i

)
[(d − 1)c1(L)]i ∩ sn−k+i(J,X) (0<k<n)

where L = OP n(1) and s(J,X) = Σn
k=0 sk(J,X) (sk(J,X) ∈ Ak(J)) denotes the Segre

class of the singular subscheme J of X.

In what follows, using the theorem above, we shall compute the class c of an algebraic
threefold with ordinary singularities in the complex projective 4-space P 4(C) for the case
where the threefold is free from quadruple points. First we fix the notation as follows:

Y = P 4(C) : the complex projective 4-space,
X : an algebraic threefold with ordinary singularities in Y , which is free from quadruple

points,
J : the singular subscheme of X defined by the Jacobian ideal of X,
D : the singular locus of X,
T : the triple point locus of X, which is equal to the singular locus of D,
C : the cuspidal point locus of X, precisely, its closure, since we always consider C

contains the stationary points,
Σs : the stationary point locus of X ,
nX : X → X : the normalization of X ,
f : X → Y : the composite of the normaliztion map nX and the inclusion ι : X ↪→ Y ,
J : the scheme-theoretic inverse of J by f ,
D, T , C and Σs : the inverse images of D, T , C and Σs by f , respectively.

Note that T and C are non-singular curves, intersecting transversely at Σs, and that
the normalization X of X is also non-singular. Calculating by use of local coordinates,
we can easily see the following:

(i) J contains D, and the residual scheme (cf. [2], Definition 9.2.1, p. 160) to D in J

is the reduced scheme C;
(ii) D is a surface with ordinary singularities, free from triple points, whose singular

locus is T ,
(iii) D is the double point locus of the map f : X → Y , i.e., the closure of {q ∈

X | #f−1(f(q)) ≥ 2} ;
(iv) the map f|D : D → D is generically two to one, simply ramified at C;
(v) the map f|T : T → T is generically three to one, simply ramified at Σs.

To compute the Segre class s(J,X), the following proposition is useful.
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Proposition 3.2 ([2], Proposition 9.2, p. 161) Let D ⊂ W ⊂ V be closed embeddings
of schemes, with V a k-dimensional variety, and D a Cartier divisor on V . Let R be the
residual scheme to D in W . Then, for all m,

s(W,V )m = s(D, V )m + Σk−m
j=0

(
k − m

j

)
[−D]j · s(R,V )m+j

in Am(W ), the m-th ratinal equivalence class group of algebraic cycles on W .

In our case, since D = f−1(D) is a Cartier divisor, its normal cone CDX to D in X

is isomorphic to OX(D)|D, the restriction to D of the line bundle OX(D) associated to
D. Therefore,

s(D, X) = c(OX(D)|D)−1 ∩ [D]

= [D] − c1(OX(D)|D) ∩ [D] + c1(OX(D)|D)2 ∩ [D]

= [D] − [D]2 + [D]3.

Since C is non-singular,

c(NC/X)−1 ∩ [C] = [C] − c1(NC/X) ∩ [C].

Hence, applying Proposition 3.2 for W = J , D = f−1(D) and R = C, we have
s(J,X)2 = [D]
s(J,X)1 = −[D]2 + [C]
s(J,X)0 = [D]3 − c1(NC/X) ∩ [C] − 3D · C

(39)

Since s(J, X)2 = f∗s(J,X)2, from the first equality above, it follows that

s(J, X)2 = 2[D](40)

To know s(J, X)1, we need to understand f∗[D]2, the push-forward of [D]2 by f . For this
purpose, we compute f∗[D]2. To compute this, we concider the following fiber square:

X ′ f ′
−−−−→ Y ′�τT

�σ
T

X −−−−→
f

Y.

(41)

Here

σT : Y ′ → Y : the blowing-up of Y along the triple point locus T of X ,
X ′ : the proper inverse image of X by σT ,
X ′ := X ×X X ′ : the fiber product of X and X ′ over X,
nX′ : X ′ → X ′ : the projection to the second factor of X ×X X ′, which is nothing but

the normalization of X ′,
f ′ : X ′ → Y ′ : the composite of the normaliztion map nX′ and the inclusion ι′ : X ′ ↪→ Y ′,
τT : X ′ → X : the projection to the first factor of X ×X X ′, which is nothing but the

blowing-up of X along T .

In what follows, we denote by D′, T ′ and C′ the proper inverse images of D, T and
C by σT , respectively. We consider the following fiber square:
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ET

j−−−−→ Y ′�p �σ
T

T −−−−→
ι

Y,

(42)

where ET = P (NT Y ) is the exceptional divisor of the blowing-up σT , which is a P 2(C)-
bundle on T , and p : ET → T is the projection to the base space of this bundle. We
denote by ON

T
Y (1) the canonical line bundle on ET . Then the tautological line bundle

on ET is ON
T

Y (−1), which is a subbundle of p∗NT Y .

Lemma 3.3 σ∗
T
[D] is expressed as

σ∗
T
[D] = [D′] + 3j∗[ξT ] + j∗p

∗[α0](43)

where [ξT ] = c1(ON
T

Y (1)) ∩ [ET ] and [α0] an algebraic 0-cycle class on T .

Proof. By the blow-up formula([2], Theorem 6.7, p.116),

σ∗
T
[D] = [D′] + j∗{c(E) ∩ p∗s(T , D)}2(44)

where E = p∗NT Y/NE
T
Y ′ = p∗NT Y/ON

T
Y (−1). Since

c1(E) = p∗c1(NT Y ) − c1(ON
T

Y (−1)) = p∗c1(NT Y ) + c1(ON
T

Y (1)),

we have

{c(E) ∩ s(T , D)}2 = p∗s0(T , D) + c1(E) ∩ p∗s1(T , D)

= p∗{s0(T , D) + c1(NT Y ) ∩ s1(T , D)}(45)

+ c1(ON
T

Y (1)) ∩ p∗s1(T , D)

To compute s(T , D), we consider the normalization map nD : D
∗ → D. D

∗
is non-

singular. Hence, if we put T
∗

:= n−1

D
(T ), we have

s(T
∗
, D

∗
) = c(NT

∗D
∗
)−1 ∩ [T

∗
]

= (1 − c1(NT
∗D

∗
)) ∩ [T

∗
]

= [T
∗
] − T

∗ · T ∗
.

Therefore,

s(T , D) = nD∗s(T
∗
, D

∗
) = 3[T ] − nD∗(T

∗ · T ∗
),

and so, {
s0(T , D) = −nD∗(T

∗ · T ∗
)

s1(T , D) = 3[T ]
(46)

By (45) and (46), if we put [α0] := −nD∗(T
∗ · T ∗

) + 3c1(NT Y ) ∩ [T ],

{c(E) ∩ s(T , D)}2 = p∗[α0] + 3[ξT ].

Cosequently, by (44), we have the equality in (43).

Proposition 3.4

[D]2 = f∗[X] · D − f∗[D] + [T ] − [C](47)
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Proof. To know [D]2, we compute f∗[D]. For this purpose, we use the diagram in
(41). Since τT : X ′ → X is a blowing-up, we have τT∗τ∗

T α = α for any algebraic cycle
α ∈ A∗(X). Hence,

τT∗f ′∗σ∗
T
[D] = τT∗τ∗

T f∗[D] = f∗[D].(48)

Since D′ is regularly embedded in Y ′, i.e., CD′Y ′ � ND′Y ′, while D is not, we can
apply the excess intersection formula ([2, Theorem 6.3, p.102]) to D′. Then, denoting the
tangent bundle of a non-singular algebraic variety, say Z, by TZ we have

f ′∗[D′] = c1(f ′∗ND′Y
′/ND′X ′) ∩ [D′]

= {c1(f ′∗TY ′) − c1(f ′∗TD′) − c1(TX′) + c1(TD′)} ∩ [D′](49)

= {c1(f ′∗TY ′) − c1(TX′)} ∩ [D′] − C′,

where the last equality follows from the ramification formula ([2, Example 3.2.20, p.62]).
On the other hand, by the double point formula ([2, Theorem 9.3, p.166]),

[D′] = f ′∗[X ′] − {c1(f ′∗TY ′) − c1(TX′)} ∩ [X ′].(50)

By (49) and (50), we have

f ′∗[D′] = f ′∗[X ′] · D′ − [D′]2 − C′.(51)

Next, in view of Lemma 3.3, we compute f ′∗(3j∗[ξT ] + j∗p
∗[α0]). For this purpose,

we consider the following fiber square:

ET
j−−−−→ X ′�p �τT

T −−−−→
ι

X,

(52)

where ET = P (NT X) is the exceptional divisor of the blowing-up τT , which is a P 1(C)-
bundle on T , and p : ET → T is the projection to the base space of this bundle. There
is a set of morphisms from the diagram in (52) to the one in (42) induced by those
in the diagram in (41). We denote by g and g′ the restriction of f : X → Y to T

and that of f ′ : X ′ → Y ′ to ET , respectively. Note that the morphism g′ : ET → ET

maps each fiber of p : ET → T to that of p : ET → T , and so g′∗[ξT ] = [ξT ] where
ξT = c1(ONT X(1)) ∩ [ET ]. Since f ′ : X ′ → Y ′ and g′ : ET → ET are local complete
intersection morphisms of the same codimension, we can apply Proposition 6.6, (c) in [2,
p.113] to the fiber square

ET
g′

−−−−→ ET�j �j

X ′ −−−−→
f ′

Y ′.

(53)

Then, f ′∗j∗[ξT ] = j∗g′∗[ξT ] = j∗[ξT ] and f ′∗j∗p
∗[α0] = j∗g′∗p∗[α0] = j∗p∗g∗[α0]. There-

fore, we have

f ′∗(3j∗[ξT ] + j∗p
∗[α0]) = 3j∗[ξT ] + j∗p

∗g∗[α0](54)

By (43), (51) and (54), we have

f ′∗σ∗
T
[D] = f ′∗[X ′] · D′ − [D′]2 − C′ + 3j∗[ξT ] + j∗p∗g∗[α0].
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Since τT∗ [C′] = [C], τT∗j∗[ξT ] = T and τT∗j∗p
∗g∗[α0] = 0, by the equality above and (48),

f∗[D] = τT∗f
′∗σ∗

T
[D]

= τT∗(f
′∗[X ′] · D′) − τT∗ [D′]2 − [C] + 3[T ].(55)

Since τ∗
T [D] = [D′] + 2[ET ],

τT∗(f
′∗[X ′] · D′) = τT∗(f

′∗[X ′] · τ∗
T [D] − 2f ′∗[X ′] · ET )(56)

On the other hand, since σ∗
T
[X] = [X ′] + 3[ET ],

f ′∗[X ′] = f ′∗σ∗
T [X] − 3[ET ].

Hence, by the projection formula,

τT∗(f
′∗[X ′] · τ∗

T [D]) = τT∗(f
′∗[X ′]) · D

= τT∗(f
′∗σ∗

T
[X ′]) · D(57)

= f∗[X] · D,

and

τT∗(f
′∗[X ′] · ET ) = τT∗(f

′∗σ∗
T
[X] · ET − 3[ET ]2)

= τT∗(τ
∗
T f∗[X] · ET ) + 3τT∗j∗[ξT ](58)

= f∗[X ] · τT∗ [ET ] + 3i∗[T ] = 3[T ]

Therefore, by (56), (57) and (58),

τT∗(f
′∗[X ′] · D′) = f∗[X ] · D − 6[T ].(59)

Furthermore, we have

τT∗ [D
′]2 = τT∗((τ∗

T [D] − 2[ET ])2)

= τT∗((τ∗
T [D])2 − 4τ∗

T [D] · [ET ] + 4[ET ]2)

= τT∗(τ∗
T [D]) · D − 4D · τT∗ [ET ] − 4τT∗j∗[ξT ](60)

= [D]2 − 4[T ].

Consequently, by (55), (59) and (60),

f∗[D] = f∗[X ] · D − 6[T ]− [D]2 + 4[T ]− [C] + 3[T ]

= f∗[X ] · D − [D]2 − [C] + [T ],

from which the equality (47) follows.

Since f∗[X ] = [X], f∗[D] = 2[D], f∗[T ] = 3[T ] and f∗[C] = [C], by Proposition 3.4,
we have the following:

Corollary 3.5

f∗[D]2 = X · D + 3[T ] − [C](61)

By Proposition 3.4 and the second equality in (39),

s(J,X)1 = −f∗[X] · D + f∗[D] − [T ] + 2[C]
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and so, by the projection formula

s(J, X)1 = −X · D − 3[T ] + 2[C](62)

Now we compute s(J, X)0. By Proposition 3.4,

[D]3 = f∗[X] · [D]2 − f∗[D] · D + D · T − D · C

Hence, by the third equality in (39),

s(J,X)0 = f∗[X ] · [D]2 − f∗[D] · D + D · T − 4D · C − c1(NCX) ∩ [C](63)

Since T and C are regulary embedded in Y , we can apply the excess intersection formula
to them. Then,

f∗[T ] = c1(f∗NT Y/NT X) ∩ [T ]

= {c1(f∗TY ) − c1(f∗TT ) − c1(TX) + c1(TT )} ∩ [T ]

= {c1(f∗TY ) − c1(TX)} ∩ [T ] − [Σs]

= f∗[X] · T − D · T − [Σs],

where the last step but one follows from the ramification formula for g : T → T and the
last step from the double point formula for f : X → Y . Similarly, since C � C, we have

f∗[C] = f∗[X] · C − D · C

Therefore we have {
D · T = f∗[X ] · T − f∗[T ] − [Σs]
D · C = f∗[X ] · C − f∗[C]

(64)

By the adjunction formula, the double point formula for f : X → Y and the second
equality in (64),

c1(NCX) ∩ [C] = −KX · C + [kC ]

= (−f∗[X + KY ] + D) · C + [kC ](65)

= −f∗[KY ] · C − f∗[C] + [kC ],

where KY , KX and kC are the canonical divisors of Y , X and C, respectively. Substituting
(64) and (65) into (63), we have

s(J,X)0 = f∗[X] · [D]2 − f∗[D] · D + f∗[X] · T − f∗[T ] − [Σs]

− 4f∗[X] · C + 4f∗[C] + f∗[KY ] · C + f∗[C] − [kC ].

Consequently, using Corollary 3.5 and the fact that f∗[X ] = [X], f∗[D] = 2[D], f∗[T ] =
3[T ], f∗[Σs] = [Σs] and C � C, we have,

s(J, X)0 = [X]2 · D − 2[D]2 + 5X · T + KY · C − [kC ] − [Σs].

We collect the results obtained till now in the following proposition:

Proposition 3.6 The Segre classes of the singular subscheme J , defined by the Jaco-
bian ideal, of an algebraic threefold X with ordinary singularities in the four dimensional
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projective space Y = P 4(C) are given as follows, if X is free from quadruple points:
s(J, X)2 = 2[D]
s(J, X)1 = −X · D − 3T + 2C

s(J, X)0 = [X ]2 · D − 2[D]2 + 5X · T + KY · C − [kC ] − [Σs]

Here D, T , C and Σs are the singular locus, triple point locus, cuspidal point locus and
stationary point locus of X, respectively. KY is the canonical divisor of the projective
4-space Y , and kC that of C.

4. The Euler number of the normalization of an algebraic threefold with
ordinary singularities. By Theorem 3.1, the top polar calss [M3] of X is given by

[M3] = (n − 1)3h3 − 3(n − 1)2h2 ∩ s2 − 3(n − 1)h ∩ s1 − s0,

where h denotes the hyperplane section class and si i-th Segre class s(J, X)i (0<i<2)
and n = deg X , the degree of X in Y . We put

m = deg D, t = deg T , γ = deg C and #Σs = the cardinal number of Σs

Then, by Proposition 3.6,
deg s2 = 2m

deg s1 = −nm + 2γ − 3t

deg s0 = n2m − 2m2 + 5nt − 5γ − #Σs − deg kC .

Consequently, the class c of X is given by

c = deg[M3] = (n − 1)3deg X − 3(n − 1)2deg s2 − 3(n − 1)deg s1 − deg s0

= (n − 1)3n − (4n2 − 9n − 2m + 6)m + (4n − 9)t − (6n − 11)γ + #Σs + deg kC .

By this formula together with Proposition 2.3, we have the following:

Theorem 4.1 The Euler number χ(X) of the non-singular normalization X of an
algebraic threefold X with ordinary singularities in P 4(C) which is free from quadruple
points is given by

χ(X) = −n(n3 − 5n2 + 10n − 10) + (4n2 − 15n − 2m + 20)m − (4n − 15)t

+ (6n − 15)γ − #Σs − deg kC .

Here n = deg X, m = deg D, t = deg T and γ = deg C are the degrees of X, the singular
locus, the triple point locus and the cuspidal point locus, respectively. #Σs is the cardinal
number of the stationary point locus Σs, and deg kC the degree of the canonical divisor
of the cuspidal point locus C.

Acknowledgement: In the first version of this article, the author did a serious
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