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Abstract. — By a classical formula due to Enriques, the Chern numbers of the
non-singular normalization X of an algebraic surface S with ordinary singularities in
P 3(C) are given by X c21 = n(n − 4)2 − (3n − 16)m + 3t − γ, X c2 = n(n2 − 4n +
6) − (3n − 8)m + 3t − 2γ, where n = the degree of S, m = the degree of the double
curve (singular locus) DS of S, t = the cardinal number of the triple points of S, and
γ=the cardinal number of the cuspidal points of S ([E]). In this article we shall give

similar formulas for an algebraic threefold X with ordinary singularities in P 4(C)
(Theorem 1.15, Theorem 2.1, Theorem 3.2). As a by-product, we obtain a numerical
formula for the Euler-Poincaré characteristic χ(X, TX) with coefficient in the sheaf

TX of holomorphic vector fields on the non-singular normalization X of X (Theorem
4.1).

Résumé. — (Les nombres de Chern de la normalisée d’une variété
algébrique de dimension 3 à points singuliers ordinaires)

Par une formule classique due à Enriques, le nombres de Chern de la normalisation
non singulière X de la surface algébrique S avec singularités ordinaires dans P 3(C)
sont donné par

X
c21 = n(n−4)2−(3n−16)m+3t−γ,

X
c2 = n(n2−4n+6)−(3n−

8)m + 3t − 2γ, où n est le degré de points triples de S, m est le degré de la courbe
double (lieu singulier) DS de S, t est le nombre de points triples de S, et γ est le degré
de points cuspidaux de S ([E]). Dans cet article nous donnons des formules similaires

pour une “threefold” algébraic X avec singularités ordinaires dans P 4(C) (Théorèm
1.15, Théorèm 2.1, Théor—‘em 3.2). Comme application, nous obtenons une formule
numérique pour la caractéristique d’Euler-Poincaré χ(X, TX) à coéfficient dans le
faisceau TX de champs de vecteurs holomorpes de la normalisation non singuliére X
de X (Théorèm 4.1).
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Introduction

An irreducible hypersurface X in the complex projective 4-space P 4(C) is called
an algebraic threehold with ordinary singularities if it is locally isomorphic to one of
the following germs of hypersurface at the origin of the complex 4-space C4 at every
point of X :



(i)w = 0 (simple point)
(ii)zw = 0 (ordinary double point)
(iii)yzw = 0 (ordinary triple point)
(iv)xyzw = 0 (ordinary quadruple point)
(v)xy2 − z2 = 0 (cuspidal point)
(vi)w(xy2 − z2) = 0 (stationary point)

(0.1)

where (x, y, z, w) is the coordinate on C4. These singularities arise if we project
a non-singular threefold embedded in a sufficiently higher dimensional complex
projective space to its four dimensional linear subspace by a generic linear projection
([R]), though the singularities (iv) and (vi) above do not occur in the surface case.
This fact can also be proved by use of the classification theory of multi-germs of
locally stable holomorphic maps ([M-3], [T-1]). Indeed, in the threefold case, the
pair of dimensions of the source and target manifolds belongs to the so-called nice
range([M-2]). Hence the multi-germ of a generic linear projection at the inverse
image of any point of X is stable, i.e., stable under small deformations ([M-4]).

In [T-2] we have proved, for an algebraic threefold X with ordinary singularities
in P 4(C) which is free from quadruple points, a formula expressing the Euler number
χ(X) of the non-singular normaliztion X of X in terms of numerical characteristics of
X and its singular loci. Note that, by the Gauss-Bonnet formula, the Euler number
χ(X) is equal to the Chern number

∫
X
c3, where c3 denotes the top Chern class of

X . In §1 we shall extend this formula to the general case where X admits quadruple
points. In this general case, we need to blow up X twice. First, along the quadruple
point locus, and secondly, along the triple point locus. It turns out that the existence
of quadruple points adds only the term 4#Σq to the formula, where #Σq denotes
the cardinal number of the quadruple point locus Σq. Using Fulton-MacPherson’s
intersection theory, especially, the excess intersection formula ([F], Theorem 6.3,
p.102), the blow-up formula (ibid., Theorem 6.7, p.116), the double point formula
(ibid., Theorem 9.3, p.166) and the ramification formula (ibid., Example 3.2.20,
p.62), we compute the push-forwards f∗[D]2 and f∗[D]3 for D the inverse image of
the singular locus of X by the normalization map in order to know the Segre classes
s(J,X)i (0<i<2) of the singular subscheme J defined by the Jacobian ideal of X.
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In §2 we shall give a formula for the Chern number
∫

X
c31 = −[KX ]3, where

[KX ] is the canonical class of X . The expressions for f∗[D]2 and f∗[D]3 obtained
in §1 enable us to compute it , because [KX ] = f∗[X + KY ] − [D] by the double
point formula, where KY is the canonical divisor of P 4(C). In §3 we shall give a
formula for the Chern number

∫
X c1c2. In fact, we shall calculate the Euler-Poincaré

characteristic χ(X,KX) with coefficient in the canonical line bundle of X , which is
equal to −(1/24)

∫
X c1c2 by the Riemann-Roch theorem. In §4, as a by-product, we

shall give a numerical formula for the Euler-Poincaré characteristic χ(X, TX) with
coefficient in the sheaf TX of holomorphic tangent vector fields on X .

Notation and Terminology

Throughout this article we fix the notation as follows:

Y := P 4(C) : the complex projective 4-space,
X : an algebraic threefold with ordinary singularities in Y ,
J : the singular subscheme of X defined by the Jacobian ideal of X,
D : the singular locus of X,
T : the triple point locus of X, which is equal to the singular locus of D,
C : the cuspidal point locus of X, precisely, its closure, since we always consider C
contains the stationary points,
Σq : the quadruple point locus of X,
Σs : the stationary point locus of X,
nX : X → X : the normalization of X,
f : X → Y : the composite of the normaliztion map nX and the inclusion ι : X ↪→ Y ,
J : the scheme-theoretic inverse of J by f ,
D, T , C and Σq : the inverse images of D, T , C and Σq by f , respectively,
Σs = T ∩ C : the intersection of T and C.

We put

n := deg X (the degree of X in P 4(C)), m := deg D, t := deg T , γ := deg C.

Note that T and C are non-singular curves, intersecting transversely at Σs, and that
the normalization X of X is also non-singular. Calculating by use of local coordinates,
we can easily see the following:

(i) J contains D, and the residual scheme to D in J is the reduced scheme C,
i.e., IJ = ID ⊗IX IC , where IJ , ID, IC are the ideal sheaves of J , D and C,
respectively (cf. [F], Definition 9.2.1, p. 160);

(ii) D is a surface with ordinary singularities, whose singular locus is T ,
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(iii) D is the double point locus of the map f : X → Y , i.e., the closure of
{q ∈ X | #f−1(f(q)) ≥ 2} ;

(iv) the map f|D : D → D is generically two to one, simply ramified at C;
(v) the map f|T : T → T is generically three to one, simply ramified at Σs.

Furthermore, we need the following diagram consisting of two fiber squares:

X ′′ f ′′
−−−−→ Y ′′�τT ′

�σ
T ′

X ′ f ′
−−−−→ Y ′�τΣq

�σΣq

X −−−−→
f

Y,

(0.2)

which is defined as follows:

σΣq : Y ′ → Y : the blowing-up of Y along the quadruple point locus Σq of X,

X
′
: the proper inverse image of X by σΣq,

X ′ := X ×X X
′
: the fiber product of X and X

′
over X,

nX
′ : X ′ → X

′
: the projection to the second factor of X ×X X

′
, which is nothing

but the normalization of X
′
,

f ′ : X ′ → Y ′ : the composite of the normaliztion map nX
′ and the inclusion

ι′ : X
′
↪→ Y ′,

Σq : the inverse image of the quadruple point locus Σq of X by f ,
τΣq : X ′ → X : the projection to the first factor of X ×X X

′
, which is nothing but

the blowing-up of X along Σq,
D

′
, T

′
, C

′
and Σs′ : the proper inverse images of D, T , C and Σs by σΣq , respectively.

D′, T ′ and C′ : the proper inverse images of D, T and C by τΣq, which are equal to
the inverse images of D

′
, T

′
and C

′
by f ′, respectively,

Σs′ : the inverse image of Σs by τΣq, which is equal to T ′ ∩ C′,

σT
′ : Y ′′ → Y ′ : the blowing-up of Y ′ along T

′
,

X
′′

: the proper inverse image of X
′
by σT

′ ,

X ′′ := X ′ ×X
′ X

′′
: the fiber product of X ′ and X

′′
over X

′
,

nX
′′ : X ′′ → X

′′
: the projection to the second factor of X ′×X

′ X
′′
, which is nothing

but the normalization of X
′′

f ′′ : X ′′ → Y ′′ : the composite of the normaliztion map nX
′′ and the inclusion

ι′′ : X
′′
↪→ Y ′′,

τT ′ : X ′′ → X ′ : the projection to the first factor of X ′ ×X
′ X

′′
, which is nothing but

the blowing-up of X ′ along T ′,
D

′′
, T

′′
, C

′′
and Σs′′: the proper inverse images of D

′
, T

′
, C

′
and Σs′ by σT ,

respectively,
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D′′, T ′′ and C′′ : the proper inverse images of D′, T ′ and C′ by τT ′ , which are equal
to the inverse images of D

′′
, T

′′
and C

′′
by f ′′, respectively,

Σs′′ : the inverse image of Σs′ by τT ′ , which is equal to T ′′ ∩ C′′.

We also use the following notation throughout this article:

[α] : the rational equivalence class of an algebraic cycle α,
α · β : the intersection class of two algebraic cycle classes [α] and [β].

Finally, we give the definitions of regular embeddings and local complete intersec-
tion morphisms of schemes.

Definition 0.1. — We say a closed embedding ι : X → Y of schemes is a regular
embedding of codimension d if every point in X has an affine neighborhood U in Y ,
such that if A is the coordinate ring of U , I the ideal of A defining X , then I is
generated by a regular sequence of length d.

If this is the case, the conormal sheaf I/I2, where I is the ideal sheaf of X in
Y , is a locally free sheaf of rank d. The normal bundle to X in Y , denoted by
NXY , is the vector bundle on X whose shef of sections is dual to I/I2. Note that
the normal bundle NXY is canonically isomorphic to the normal cone CXY for a
(closed) regular embedding ι : X → Y since the canonical map from Sym(I/I2) to
S· := Σ∞

k=0Ik/Ik+1 is an isomorphism (cf. [F], Appendix B, B.7).

Definition 0.2. — A morphism f : X → Y is called a local complete intersection
morphism of codimension d if f factors into a (closed) regular embedding ι : X → P of
some constant codimension e, followed by a smooth morphism p : P → Y of constant
relative dimension d+ e.

1. The computation of
∫

X c3

In [T-2] we have proved, for an algebraic threefold X with ordinary singularities in
P 4(C) which is free from quadruple points, a formula expressing the the Euler number
χ(X) of the non-singular normalizationX ofX in terms of numerical characteristics of
X and its singular loci. We recall its proof briefly. We have first proved the following:

Theorem 1.1. — ([T-2], Theorem 2.1) We have a linear pencil L :=
⋃

λ∈P 1 Xλ

on X, consisting of hyperplane sections Xλ of X in P 4(C), whose pull-back L :=⋃
λ∈P 1 Xλ to X by the normalization map f : X → X has the following properties:

There exists a finite set {λ1, · · · , λc} of points of P 1 such that
(i) Xλ is non-singular for λ with λ �= λi (1<i<c), and
(ii) Xλi is a surface with only one isolated ordinary double point which is contained

in
X \ f−1(C∞) for any i with 1<i<c,

where c is the class of X, i.e., the degree of the top polar class [M3] of X in P 4(C)
(cf. [P]), and C∞ the base point locus of the linear pencil L, which is an irreducible
curve with m (= deg D) ordinary double points in P 2(C) whose degree is equal to
n (= deg X).
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Let σ : X̂ → X be the blowing-up along C∞ := f−1(C∞), and L̂ :=
⋃

λ∈P 1 X̂λ the
proper inverse of L :=

⋃
λ∈P Xλ. Then L̂ gives a fibering of X̂ over P 1(C). Hence

the Euler number χ(X̂) of X̂ is given by

χ(X̂) = χ(P 1(C))χ(X̂λ) + Σc
j=1(χ(X̂λj ) − χ(X̂λ))

= 2χ(X̂λ) − c

where X̂λ denotes a generic fiber of the fiber space X̂ → P 1. The second equality
above follows from the fact that a topological 2-cycle vanishes when λ → λj for
j = 1, · · · , c. We put Ê := σ−1(C∞). Then, since X̂ \ Ê � X \ C∞,

χ(X̂) − χ(X) = χ(Ê) − χ(C∞)
= χ(P 1(C))χ(C∞) − χ(C∞)
= χ(C∞)

Hence,

χ(X) = χ(X̂) − χ(C∞) = 2χ(X̂λ) − χ(C∞) − c(1.1)
= 2χ(Xλ) − χ(C∞) − c.

Since C∞ is a curve whose degree is equal to n with m ordinary double points in
P 2(C), the genus g(C∞) is given by

g(C∞) =
1
2
(n− 1)(n− 2) −m.

Hence,
χ(C∞) = 2 − 2g(C∞) = 2 − (n− 1)(n− 2) + 2m.(1.2)

Note that Xλ is a surface with ordinary singularities in a hyperplane Hλ � P 3(C) of
degree n, whose numerical characteristics related to its singularitis are as follows:

the degree of its double curve Dλ = m

#{triple points of Xλ} = t, #{cuspidal points of Xλ} = γ.
Therefore, by the classical formula,

χ(Xλ) = n(n2 − 4n+ 6) − (3n− 8)m+ 3t− 2γ(1.3)
By (1.1), (1.2) and (1.3), we have the following:

Proposition 1.2. — ([T-2], Proposition 2.2)

χ(X) = 2n(n2 − 4n+ 6) − 2(3n− 8)m+ 6t− 4γ
− 2 + (n− 1)(n− 2) − 2m− c

= n(2n2 − 7n+ 9) − 2(3n− 7)m+ 6t− 4γ − c

(1.4)

Even if X admits quadruple points, Theorem 1.1 and Proposition 1.2 above can be
proved without change of their proofs in [T-2]. Hence what we have to do is compute
the class c of X , i.e., the degree of the top polar class [M3] of X in P 4(C). By the
result due to R. Piene ([P], Theorem (2.3)), the top polar class [M3] of X is given by

[M3] = (n− 1)3h3 − 3(n− 1)2h2 ∩ s2 − 3(n− 1)h ∩ s1 − s0,(1.5)

where h denotes the hyperplane section class and si i-th Segre class s(J,X)i (0<i<2).
Since f∗s(J,X)i = s(J,X)i (0<i<2), it suffices to compute the Segre classes s(J,X)i
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and their push-forwards by f . To compute the Segre class s(J,X)i, the following
proposition is useful.

Proposition 1.3. — ([F], Proposition 9.2, p.161) Let D ⊂W ⊂ V be closed embed-
dings of schemes, with V a k-dimensional variety, and D a Cartier divisor on V . Let
R be the residual scheme to D in W . Then, for all m,

s(W,V )m = s(D,V )m + Σk−m
j=0

(
k −m

j

)
[−D]j · s(R,V )m+j

in Am(W ), the m-th ratinal equivalence class group of algebraic cycles on W .

In our case, since D = f−1(D) is a Cartier divisor, its normal cone CDX to D in X
is isomorphic to OX(D)|D , the restriction to D of the line bundle OX(D) associated
to D. Therefore, the total Segre class s(D,X) of D in X is given as follows:

s(D,X) = c(OX(D)|D)−1 ∩ [D]
= [D] − c1(OX(D)|D) ∩ [D] + c1(OX(D)|D)2 ∩ [D]
= [D] − [D]2 + [D]3.

Since C is non-singular,

c(NC/X)−1 ∩ [C] = [C] − c1(NC/X) ∩ [C].

Hence, applying Proposition 1.3 above to W = J , D = f−1(D) and R = C, we have
s(J,X)2 = [D]
s(J,X)1 = −[D]2 + [C]
s(J,X)0 = [D]3 − c1(NC/X) ∩ [C] − 3D · C

(1.6)

where NC/X is the normal bundle of C in X . Since f∗[D] = 2[D], it follows from the
first identity in (1.6) that

s(J,X)2 = 2[D].
In what follows we use the notation in the diagram (??) freely without mention.

Lemma 1.4. —

σ∗
Σq [D] = [D′] + 6j

′
∗
∑

q

[H ′
q],(1.7)

where H ′
q is a hyperplane of Eq := σ−1

Σq (q) � P 3(C) for each quadruple point q, and
j
′
the inclusion map ΣqEq ↪→ Y ′

Proof. — : Since the multiplicity of D at each quadruple point q of X is 6, (1.7)
follows from the blow-up formula ([F], Theorem 6.7, p.116 and Corollary 6.7.1, p.117).

We consider the following fiber square:

ET
′

j
′′

−−−−→ Y ′′�p′′
�σ

T ′

T
′ −−−−→

ι′
Y ′,

(1.8)

where ET
′ = P (NT

′Y ′) is the exceptional divisor of the blowing-up σT
′ , which is

a P 2(C)-bundle over T
′
, and p′′ : ET

′ → T
′

is the projection to the base space
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of this bundle. We denote by ON
T ′Y ′(1) the canonical line bundle on ET

′ , and by
ON

T ′Y ′(−1) its dual, or the tautological line bundle on ET
′ .

Lemma 1.5. — σ∗
T

′ [D
′
] is expressed as

σ∗
T

′ [D
′
] = [D

′′
] + 3j

′′
∗ [ξT ′ ] + j

′′
∗p

′′∗[α0](1.9)

where [ξT ′ ] = c1(ON
T ′Y ′(1)) ∩ [ET

′ ] and [α0] an algebraic 0-cycle class on T
′
.

By the blow-up formula,

σ∗
T

′ [D
′
] = [D

′′
] + j

′′
∗{c(E′′) ∩ p′′∗s(T ′

, D
′
)}2(1.10)

where E′′ = p′′∗NT
′Y ′/NE

T ′ , Y
′′ = p′′∗NT

′Y ′/ON
T ′Y ′(−1) and s(T

′
, D

′
) is the total

Segre class of T
′
in D

′
. Since

c1(E′′) = p′′∗c1(NT
′Y ′) − c1(ON

T ′Y ′(−1)) = p′′∗c1(NT
′Y ′) + c1(ON

T ′Y ′(1)),

we have

{c(E′′) ∩ s(T ′
, D

′
)}2 = p′′∗s0(T

′
, D

′
) + c1(E′′) ∩ p′′∗s1(T

′
, D

′
)

= p′′∗{s0(T
′
, D

′
) + c1(NT

′Y ′) ∩ s1(T
′
, D

′
)}

+ c1(ON
T ′Y ′(1)) ∩ p′′∗s1(T

′
, D

′
)

(1.11)

To compute s(T
′
, D

′
), we consider the normalization map nD

′ : D
′∗ → D

′
. D

′∗
is

non-singular. Hence, if we put T
′∗

:= n−1

D
′ (T

′
), we have

s(T
′∗
, D

′∗
) = c(NT

′∗D
′∗

)−1 ∩ [T
′∗

]

= (1 − c1(NT
′∗D

′∗
)) ∩ [T

′∗
]

= [T
′∗

] − T
′∗ · T ′∗

.

Therefore,

s(T
′
, D

′
) = nD

′∗s(T
′∗
, D

′∗
) = 3[T

′
] − nD

′∗(T
′∗ · T ′∗

),

and so, {
s0(T

′
, D

′
) = −nD

′
∗
(T

′∗ · T ′∗
)

s1(T
′
, D

′
) = 3[T

′
]

(1.12)

By (1.11) and (1.12), if we put [α0] := −nD
′∗(T

′∗ · T ′∗
) + 3c1(NT

′Y ′) ∩ [T
′
],

{c(E′′) ∩ s(T ′
, D

′
)}2 = p′′∗[α0] + 3[ξT ′ ].

Cosequently, by (1.10), we obtain (1.9).

By Lemma 1.4 and Lemma 1.5 we have the following:
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Lemma 1.6. —
σ∗

T
′σ∗

Σq[D] = [D
′′
] + 3j

′′
∗ [ξT ′ ] + j

′′
∗p

′′∗[α0] + 6�
′′
∗

∑
q

[H ′′
q ],(1.13)

where [ξT ′ ] = c1(ON
T ′Y ′(1))∩ [ET

′ ] and [α0] an algebraic 0-cycle class on T
′
, H ′′

q the
proper inverse image of H ′

q by σT
′ , and �

′′
the inclusion map ΣqE

′
q ↪→ Y ′′ where E′

q
is the proper inverse image of Eq by σT

′ .

Proposition 1.7. —

f ′′∗[D
′′
] = f ′′∗[X

′′
] ·D′′ − [D′′]2 − [C′′](1.14)

Proof. — : Since D
′′

is regularly embedded in Y ′′, i.e., CD
′′Y ′′ � ND

′′Y ′′, while D
′

is not, we can apply the excess intersection formula ([F], Theorem 6.3, p.102) to D
′′
.

Then, denoting the tangent bundle of a non-singular algebraic variety, say Z, by TZ ,
we have

f ′′∗[D
′′
] = c1(f ′′∗ND

′′Y ′′/ND′′X ′′) ∩ [D′′]
= {c1(f ′′∗TY ′′) − c1(f ′′∗TD

′′) − c1(TX′′) + c1(TD′′)} ∩ [D′′]
= {c1(f ′′∗TY ′′) − c1(TX′′)} ∩ [D′′] − C′′,

(1.15)

where the last equality follows from the ramification formula ([F], Example 3.2.20,
p.62). On the other hand, by the double point formula ([F], Theorem 9.3, p.166,
Example 9.3.4, p.167),

[D′′] = f ′′∗[X
′′
] − {c1(f ′′∗TY ′′) − c1(TX′′)} ∩ [X ′′].(1.16)

By (1.15) and (1.16), we obtain (1.14).

Proposition 1.8. —

f ′∗σ∗
Σq [D] = f ′∗[X

′
] ·D′ − [D′]2 − [C′] + [T ′] + 6k′∗

∑
q

[H ′
q],(1.17)

where H ′
q is a hyperplane of τ−1

Σq (q) := Eq � P 2(C) for each point q of Σq, and k′ the
inclusion map ΣqEq ↪→ X ′.

Proof. — : We first note that

f ′∗σ∗
Σq [D] = τT ′∗τ∗T ′f ′∗σ∗

Σq [D]
= τT ′∗f ′′∗σ∗

T
′σ∗

Σq[D]
(1.18)

The first equality above follows from the fact that τT ′ is the blowing-up of X ′ along
T ′, and the second one from the commutativity of the upper fiber square in (0.2).
Therefore, it suffices to compute the image of each term on the right hand side in
(refe113) by τT ′∗f ′′∗. First, we will compute the image by f ′′∗. f ′′∗[D

′′
] is given

by (refe114). To compute f ′′∗(3j
′′
∗ [ξ′

T
] + j

′′
∗p

′′∗[α0]), we consider the following fiber
square:

ET ′
j′′−−−−→ X ′′�p′′

�τT ′

T ′ −−−−→
ι′

X ′,

(1.19)

where ET ′ = P (NT ′X ′) is the exceptional divisor of the blowing-up τT ′ , which is a
P 1(C)-bundle over T ′, and p′′ : ET ′ → T ′ is the projection to the base space of this
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bundle. There is a set of morphisms from the diagram in (1.19) to the one in (1.8)
induced by those in the upper fiber square in (0.2). We denote by g′ and g′′ the
restriction of f ′ : X ′ → Y ′ to T ′ and that of f ′′ : X ′′ → Y ′′ to ET ′ , respectively.
Note that the morphism g′′ : ET ′ → ET

′ maps each fiber of p′′ : ET ′ → T ′ to that
of p′′ : ET

′ → T
′
, and so g′′∗[ξT ′ ] = [ξT ′ ], where [ξT ′ ] = c1(ONT ′X′(1)) ∩ [ET ′ ]. Since

f ′′ : X ′′ → Y ′′ and g′′ : ET ′ → ET
′ are local complete intersection morphisms of the

same codimension, we can apply Proposition 6.6, (c) in [F] (p.113) to the fiber square

ET ′
g′′

−−−−→ ET
′�j′′

�j
′′

X ′′ −−−−→
f ′′

Y ′′.

(1.20)

Then,

f ′′∗j
′′
∗ [ξT ′ ] = j′′∗ g

′′∗[ξT ′ ] = j′′∗ [ξT ′ ], and(1.21)

f ′′∗j
′′
∗p

′′∗[α0] = j
′′
∗g

′′∗p′′∗[α0] = j′′∗ p
′′∗g′∗[α0].(1.22)

To compute f ′′∗(6�
′′
∗Σq[H ′′

q ]), we consider the following fiber squares:

ΣqE
′
q

�′′−−−−→ X ′′ ΣqE
′
q

�
′′

−−−−→ Y ′′�q′′
�τT ′

�q′′
�σ

T ′

ΣqEq −−−−→
k′

X ′, ΣqEq −−−−→
k
′ Y ′.

(1.23)

As before there is a set of morphisms from the diagram on the left to the one on the
right in (1.23) by those in the upper fiber square in (0.2). We denote by h′ and h′′
the restriction of f ′ to ΣqEq and that of f ′′ : X ′′ → Y ′′ to ΣqE

′
q, respectively. Since

f ′′ : X ′′ → Y ′′ and h′′ : ΣqE
′
q → ΣqE

′
q are local complete intersection morphisms of

the same codimension, we have

f ′′∗�
′′
∗ [H ′′

q ] = �′′∗h
′′∗[H ′′

q ].(1.24)

Similarly, applying the same arguments for f ′ : X ′ → Y ′ and h′ : ΣqEq → ΣqEq, we
have

f ′∗k
′
∗[H

′
q] = k′∗h

′∗[H ′
q] = k′∗[H

′
q].(1.25)

Since h′′∗q′′∗ = q′′∗h′∗ and [H ′′
q ] = q′′∗[H ′

q],

�′′∗h′′∗[H ′′
q ] = �′′∗h′′∗q

′′∗[H ′
q]

= �′′∗q
′′∗h′∗[H ′

q]
= �′′∗q

′′∗[H ′
q].

(1.26)

Further, since τT ′ : X ′′ → X ′ and g′′ : ΣqE
′
q → ΣEq are local complete intersection

morphisms of the same codimension,
�′′∗q

′′∗[H ′
q] = τ∗T ′k′∗[H

′
q].(1.27)

Therefore, by (1.24), (1.26) and (1.27),

f ′′∗�
′′
∗ [H ′′

q ] = τ∗T ′k′∗[H
′
q].(1.28)

Cosequently, by (1.13), (1.14), (1.21), (1.22) and (1.28),

f ′′∗σ∗
T

′σ∗
Σq [D] = f ′′∗[X

′′
] ·D′′ − [D′′]2 − [C′′] + 3 j′′∗ [ξT ′ ] + j′′∗ p

′′∗g′∗[α0] + 6τ∗T ′k′∗Σq[H ′
q].
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Since τT ′∗[C′′] = [C′], τT ′∗j′′∗ [ξT ′ ] = [T ′], τT ′∗j′′∗ p
′′∗g′∗[α0] = 0 and τT ′∗τ∗T ′k′∗[H

′
q] =

k′∗[H
′
q], by (1.18) and the equality above, we have

f ′∗σ∗
q [D] = τT ′∗(f ′′∗[X

′′
] ·D′′]) − τT ′∗[D′′]2 − [C′]

+3[T ′] + 6k′∗Σq[H ′
q].

(1.29)

Since τ∗T ′ [D′] = [D′′] + 2[ET ′ ],

τT ′∗(f ′′∗[X
′′
] ·D′′) = τT ′∗(f ′′∗[X

′′
] · τ∗T ′ [D′] − 2f ′′∗[X

′′
] ·ET ′).(1.30)

On the other hand, since σ∗
T

′ [X
′
] = [X

′′
] + 3[ET

′ ],

f ′′∗[X
′′
] = f ′′∗σ∗

T
′ [X

′
] − 3[ET ′ ].

Hence,

τT ′∗(f ′′∗[X
′′
] · τ∗T ′D′) = τT ′∗(f ′′∗[X

′′
]) ·D′

= τT ′∗(f ′′∗σ∗
T

′ [X
′
] − 3[ET ′ ]) ·D′

= τT ′∗(f ′′∗σ∗
T

′ [X
′
]) ·D′

= τT ′∗(τ∗T ′f ′∗[X
′
]) ·D′

= f ′∗[X
′
] ·D′,

(1.31)

and

τT ′∗(f ′′∗[X
′′
] · ET ′) = τT ′∗((f ′′∗σ∗

T
′ [X

′
]) · ET ′ − 3[ET ′ ]2)

= τT ′∗(τ∗T ′f ′∗[X
′
] · ET ′) + 3τT ′∗j′′∗ [ξT ′ ]

= f ′∗[X
′
] · τT ′∗[ET ′ ] + 3ι′∗[T

′] = 3[T ′].
(1.32)

Therefore, by (1.30), (1.31) and (1.32),

τT ′∗(f ′′∗[X
′′
] ·D′′) = f ′∗[X

′
] ·D′ − 6[T ′].(1.33)

Furthermore, we have

τT ′∗[D′′]2 = τT ′∗((τ∗T ′ [D′] − 2[ET ′ ])2)
= τT ′∗((τ∗T ′ [D′])2 − 4τ∗T ′ [D′] · [ET ′ ] + 4[ET ′ ]2)
= (τT ′∗τ∗T ′ [D′]) · [D′] − 4[D′] · τT ′∗[ET ′ ] − 4τT ′∗[ξT ′ ]
= [D′]2 − 4[T ′].

(1.34)

Consequently, by (1.29), (1.33) and (1.34), we obtain (1.17).

Proposition 1.9. —

f∗[D] = f∗[X] ·D − [D]2 − [C] + [T ](1.35)

Proof. — Since τΣq∗f ′∗σ∗
Σq[D] = τΣq∗τ∗Σqf

∗[D] = f∗[D], τΣq∗[C′] = [C], τΣq∗[T ′] =
[T ] and τΣq∗[H ′

q] = 0, by Proposition 1.8, we have

f∗[D] = τΣq∗(f ′∗[X ] ·D′) − τΣq∗[D′]2 − [C] + [T ].(1.36)
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Since τ∗Σq[D] = [D′] + 3[ΣqEq], we have

τΣq∗[D′]2 = τΣq∗((τ∗Σq [D] − 3[ΣqEq])2)
= τΣq∗(τ∗Σq[D])2 − 6τΣq∗(τ∗ΣqD · ΣqEq) + 9 τΣq∗[ΣqEq]2

= [D]2 − 6D · τΣq∗[EΣq] − 9k′∗τΣq∗[ΣqH
′
q]

= [D]2,

(1.37)

where H ′
q is a hyperplane of Eq � P 2(C), and

τΣq∗(f ′∗[X
′
] ·D′) = τΣq∗(f ′∗[X

′
] · τ∗Σq[D]) − 3 τΣq∗(f ′∗[X

′
] · ΣqEq).(1.38)

On the other hand, since σΣq [X] = [X
′
] + 4[ΣqEq],

f ′∗[X
′
] = f ′∗σ∗

Σq[X ] − 4 ΣqEq

Hence,

τΣq∗(f ′∗[X
′
] · τ∗Σq [D]) = τΣq∗(f ′∗σ∗

Σq [X] · τ∗Σq[D]) − 4 τΣq∗(ΣqEq · τ∗Σq[D])

= τΣq∗(f ′∗σ∗
Σq [X]) · [D] − 4 τΣq∗(ΣqEq) · [D](1.39)

= τΣq∗τ∗Σqf
∗[X] · [D] = f∗[X] · [D],

and

τΣq∗(f ′∗[X
′
] · ΣqEq) = τΣq∗(f ′∗σ∗

Σq [X] · ΣqEq) − 4 τΣq∗[ΣqEq]2

= τΣq∗(τ∗Σqf
∗[X] · ΣqEq) + 4 τΣq∗(k′∗ΣqH

′
q)

= f∗[X] · τΣq∗[ΣqEq] = 0.
(1.40)

Therefore, by (1.38), (1.39) and (1.40),

τΣq∗(f ′∗[X
′
] ·D′) = f∗[X] · [D].(1.41)

Consequently, by (1.36), (1.37) and (1.41), we obtain (1.35).

Since f∗[X ] = [X], f∗[D] = 2[D], f∗[T ] = 3[T ] and f∗[C] = [C], by Proposition
1.9, we have the following:

Corollary 1.10. —

f∗[D]2 = [X] · [D] + 3[T ] − [C]

By Proposition 1.9,

[D]2 = f∗[X] ·D − f∗[D] − [C] + [T ].(1.42)

Hence, by the second equality in (1.6),

s(J,X)1 = −f∗[X] ·D + f∗[D] + 2[C] − [T ],
and so, by the projection formula,

s(J,X)1 = −X ·D − 3[T ] + 2[C].

We are now going to compute s(J,X)0. Since s(J,X)0 = f∗s(J,X)0, it suffices
to know the push-forward of each term of the right hand side of the last identity in
(1.6). By (1.42),

[D]3 = f∗[X] · [D]2 − f∗[D] ·D −D · C +D · T.(1.43)
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To realize f∗[D]3, we compute the push-forward of each term on the right hand side
of (1.43). By the projection formula and Cororally 1.10,

f∗(f∗[X] · [D]2) = [X ] · f∗[D]2

= [X ]2 · [D] + 3[X] · T − [X] · C.(1.44)

Since f∗[D] = 2[D], by the projection formula,

f∗(f∗[D] ·D) = [D] · f∗[D]
= 2[D]2.

(1.45)

To realize f∗[D · C], we compute f∗[C]. Since C is regularly embedded in Y , we can
apply the excess intersection formula to it. Then,

f∗[C] = c1(f∗NCY/NCX) ∩ [C]
= {c1(f∗TY ) − c1(f∗TC) − c1(TX) + c1(TC)} ∩ [C]
= {c1(f∗TY ) − c1(TX)} ∩ [C]
= f∗[X] · C −D · C,

(1.46)

where the last equality but one follows from the fact C � C and the last equality
from the double point formula for f : X → Y . Therefore, by (1.46) and the projection
formula, we have

f∗(D · C) = X · f∗[C] − C · f∗[X ]
= X · C − C ·X = 0

(1.47)

To realize f∗(D · T ), we compute f∗[T ]. Since T is not regularly embedded in Y , we
cannot apply the excess intersection formula to T . But, since T

′
is regularly embedded

in Y ′, we can apply it to T
′
. Then, by the same way as in the case of C,

f ′∗[T
′
] = f ′∗[X

′
] · T ′ −D′ · T ′ − [Σs′](1.48)

Here the term [Σs′] comes from {c1(f ′∗TT
′) − c1(TT ′ )} ∩ [T ′] = [Σs′], which is the

ramification formula for f ′
|T ′ .

Lemma 1.11. —

(i) σ∗
Σq[T ] = [T

′
] + 4Σq[H ′

q]
2,

(ii) τ∗Σq[T ] = [T ′] + 3Σq[H ′
q],

where H ′
q is a hyperplane of Eq := σ−1

Σq (q) � P 3(C) for each quadruple point q and
H ′

q that of Eq := τ−1
Σq (q) � P 2(C) for each point q of f−1(Σq).

Proof. — : Since the multiplicity of T (resp. T ) at each quadruple point q (resp.
at each point q of f−1(Σq)) is 4 (resp. 3), (i) (resp. (ii)) follows from the blow-up
formula ([F], Theorem 6.7, p.116, and Corollary 6.7.1, p.117).

Proposition 1.12. —

f∗[T ] = f∗[X ] · T −D · T − [Σs] + [Σq](1.49)
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Proof. — : Since f ′∗(4 Σq[H ′
q]

2) = 4Σq[H ′
q]

2, by Lemma 1.11, (i) and (1.48),

f ′∗σ∗
Σq[T ] = f ′∗[T

′
] + 4 Σq[H ′

q]
2

= f ′∗[X
′
] · T ′ −D′ · T ′ − [Σs′] + 4 Σq[H ′

q]
2.

(1.50)

Since

f∗[T ] = τΣq∗τ∗Σqf
∗[T ] = τΣq∗f ′∗σ∗

Σq[T ],(1.51)

it suffices to compute the push-forward of each term on the right hand side in (1.50) by
τΣq∗ in order to know f∗[T ]. Since σ∗

Σq [X] = [X
′
] + 4[ΣqEq] and f ′∗[ΣqEq] = [ΣqEq],

by Lemma 1.11, (ii),

τΣq∗(f ′∗[X
′
] · T ′) = τΣq∗((f ′∗σ∗

Σq[X ] − 4[ΣqEq]) · (τ∗Σq[T ] − 3[ΣqH
′
q]))

= τΣq∗((τ∗Σqf
∗[X]) · τ∗Σq[T ] − 4[ΣqEq] · τ∗Σq[T ]

−3τ∗Σqf
∗[X ] · [ΣqH

′
q] + 12[ΣqEq] · [ΣqH

′
q])

= f∗[X] · T − 12[Σq].

(1.52)

Here the second equality follows from the commutativity of the lower fiber square in
(0.2) and the third one from the projection formula and the following facts:

τΣq∗[ΣqEq] = 0,
τΣq∗[ΣqH

′
q] = 0,

[ΣqEq] · [ΣqH
′
q] = −Σq[H ′

q]
2,

τΣq∗(Σq[H ′
q]2) = [Σq].

(1.53)

Since τ∗Σq[D] = [D′] + 3[ΣqEq], by Lemma 1.11, (ii),

D′ · T ′ = (τ∗Σq[D] − 3[ΣqEq]) · (τ∗Σq [T ] − 3Σq[H ′
q])

= τ∗Σq[D] · τ∗Σq[T ] − 3(τ∗Σq[D] · Σq[H ′
q]) − 3([EΣq] · τ∗Σq[T ]) + 9[EΣq] · Σq[H ′

q]

Hence, by the projection formula and (1.53),

τΣq∗(D′ · T ′) = D · T − 9[Σq](1.54)

Consequently, by (1.51), (1.50), (1.52), (1.54) and the fourth equality in (1.53),

f∗[T ] = f∗[X] · T − 12[Σq]−D · T + 9[Σq] − [Σs] + 4[Σq]
= f∗[X] · T −D · T − [Σs] + [Σq].

Corollary 1.13. —

f∗[D]3 = [X ]2 · [D] − 2[D]2 + 5X · T −X · C − [Σs] + 4[Σq].(1.55)

Proof. — : By Proposition 1.12,

D · T = f∗[X] · T − f∗[T ] − [Σs] + [Σq].

Hence,

f∗(D · T ) = 3X · T −X · T − [Σs] + 4[Σq]
= 2X · T − [Σs] + 4[Σq]

(1.56)
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By (1.43), (1.47), (1.56) and Corollary 1.10,

f∗[D]3 = [X] · f∗[D]2 − 2[D]2 + 2X · T − [Σs] + 4[Σq]
= [X]2 ·D + 3X · T −X · C − 2[D]2 + 2X · T − [Σs] + 4[Σq]
= [X]2 ·D + 5X · T −X · C − 2[D]2 − [Σs] + 4[Σq]

Since

s(J,X)0 = f∗s(J,X)0
= f∗[D]3 − f∗c1(NC/X) ∩ [C] − 3f∗(D · C)
= f∗[D]3 − f∗c1(NC/X) ∩ [C] (cf. (1.47)),

(1.57)

what remains is to compute f∗c1(NC/X) ∩ [C] in order to know s(J,X)0. By the
adjunction formula, the double point formula for f : X → Y and (1.46),

c1(NCX) ∩ [C] = −KX · C + [kC ]
= (−f∗[X +KY ] +D) · C + [kC ]
= −f∗[KY ] · C − f∗[C] + [kC ],

where KY , KX and kC are the canonical divisors of Y , X and C, respectively. There-
fore, by the projection formula and the fact C � C,

f∗(c1(NCX) ∩ [C]) = −KY · C −X · C + [kC ](1.58)

Substituting (1.55) and (1.58) into (1.57), we have

s(J,X)0 = [X ]2 ·D − 2[D]2 + 5X · T +KY · C − [kC ] − [Σs] + 4[Σq].

We collect the results concerning the Segre classes of X obtained up to this point
in the following proposition:

Proposition 1.14. — The Segre classes of the singular subscheme J , defined by the
Jacobian ideal, of an algebraic threefold X with ordinary singularities in the four
dimensional projective space Y = P 4(C) are given as follows:

s(J,X)2 = 2[D]
s(J,X)1 = −X ·D − 3T + 2C
s(J,X)0 = [X ]2 ·D − 2[D]2 + 5X · T +KY · C − [kC ] − [Σs] + 4[Σq].

Here D, T , C, Σs and Σq are the singular locus, triple point locus, cuspidal point
locus, stationary point locus and quadruple point locus of X, respectively. KY is the
canonical divisor of the projective 4-space Y , and kC that of C.

Note that the effect of the existence of quadruple points of X is only the term 4[Σq]
in the expression of s(J,X)0.

Then, by Proposition 1.14,
deg s2 = 2m
deg s1 = −nm+ 2γ − 3t
deg s0 = n2m− 2m2 + 5nt− 5γ − #Σs− deg kC + 4#Σq,
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where n = deg X (the degree of X in Y ), m = deg D, t = deg T , γ = deg C,
and #Σs = the cardinal number of Σs, and #Σq = the cardinal number of Σq.
Consequently, by (1.5), the class c of X is given by

c = deg[M3] = (n− 1)3deg X − 3(n− 1)2deg s2 − 3(n− 1)deg s1 − deg s0

= (n− 1)3n− (4n2 − 9n− 2m+ 6)m+ (4n− 9)t− (6n− 11)γ
+ #Σs+ deg kC − 4#Σq.

By this formula together with Propsition 1.2, we have the following:

Theorem 1.15. — The Euler number χ(X) of the non-singular normalization X of
an algebraic threefold X with ordinary singularities in P4(C) is given by∫

X

c3 = χ(X) = −n(n3 − 5n2 + 10n− 10) + (4n2 − 15n− 2m+ 20)m− (4n− 15)t

+ (6n− 15)γ − #Σs− deg kC + 4#Σq.

Here n = deg X, m = deg D, t = deg T and γ = deg C are the degrees of X, the
singular locus, the triple point locus and the cuspidal point locus, respectively. #Σs is
the cardinal number of the stationary point locus Σs, deg kC the degree of the canonical
divisor of the cuspidal point locus C, and #Σq the cardinal number of the quadruple
point locus Σq.

2. The computation of
∫

X
c31

By the double point formula, the canonical class [KX ] of X is given by

[KX ] = f∗[X +KY ] − [D] = f∗[(n− 5)H ] − [D].(2.1)

where H is a hyperplane in Y = P 4(C). Therefore,

[KX ]3 = (f∗[(n− 5)H ] − [D])3

= (f∗[(n− 5)H ])3 − 3f∗[(n− 5)H ])2 ·D + 3f∗[(n− 5)H ] · [D]2 − [D]3

= f∗((n− 5)3[H ]3) − 3f∗[(n− 5)2[H ]2] ·D + 3f∗[(n− 5)H ] · [D]2 − [D]3.

Hence, by the projection formula, Corollary 1.10 and Corollary 1.13,

f∗[KX ]3 = (n− 5)3[H ] ·X − 6[(n− 5)2[H ]2 ·D + 3(n− 5)[H ]) · f∗[D]2 − f∗[D]3

= (n− 5)3[H ]3 ·X − 6(n− 5)2[H ]2 ·D + 3(n− 5)[H ] · (X ·D + 3[T ] − [C])
− [X]2 ·D + 2[D]2 − 5X · T +X · C + [Σs] − 4[Σq].

Cosequently,
deg [KX ]3 = deg f∗[KX ]3

= n(n− 5)3 − 6(n− 5)2m+ 3(n − 5)(nm+ 3t− γ)
− n2m+ 2m2 − 5nt+ nγ + #Σs− 4#Σq.

Since
∫

X
c31 = −deg[KX ]3, we have the following proposition.

Theorem 2.1. — The Chern number
∫

X c31 of the normalization X of an algebraic
threefold X in P 4(C) is given by the following formula:∫

X

c31 = −n(n− 5)3 + 6(n− 5)2m− 3(n− 5)(nm+ 3t− γ)

+ n2m− 2m2 + 5nt− nγ − #Σs+ 4#Σq.
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3. The computation of
∫

X
c1c2

By the Riemann-Roch theorem for a non-singular threefold, we have

χ(X,KX) = − 1
24

∫
X

c1c2(3.1)

Therefore, if we can express χ(X,KX) in terms of numerical characteristics of X ,
then we can do the same for the Chern number c1c2. This is what we are going to
do in the following. For a line bundle F on Y , we denote by OY (F ) the sheaf of
local holomorphic cross-sections of F over Y . Furthermore, we define the following
sheaves:

OY (F −D) := OY (F ) ⊗OY ID,

OY (F −X) := OY (F ) ⊗OY IX ,

OY (F )D := OY (F )/OY (F −D), and
OY (F −D)X := OY (F −D)/OY (F −X),

where ID and IX denote the ideal sheaves of D and X in OY , respectively

Lemma 3.1. — There exist the exact sequences of sheaves

0 → OY (F −X) → OY (F −D) → OY (F −D)X → 0,(3.2)

0 → OY (F −D) → OY (F ) → OY (F )D → 0,(3.3)
over Y and the isomorphism of sheaves

f∗(OX(f∗F −D)) � OY (F −D)X(3.4)

Proof. — : The exactness of the sequences in (3.2) and (3.3) follows from the defini-
tions of the sheaves OY (F −D)X and OY (F )D. In what follows we shall prove the
existence of the isomorphism in (3.4). Let p be a point of X and (x, y, z, w) a local
coordinate with center p in Y such that X is defined by one of the equations in (0.1)
in the introduction in an open neighborhood of p in Y . An element of OY (F −D)X,p,
the stalk of the sheaf OY (F −D)X at p, can be represented by a local holomorphic
function, say ϕ(x, y, z, w), defined in an open neighborhood of p, which vanishes on
D. The map which assignes f∗ϕ ∈ OX(f∗F −D)f−1(p) , the pull-back of ϕ by f , to
ϕ ∈ OY (F −D)X,p defines the homomorphism of sheaves in (3.4). We are going to
show that it is an isomorphism in the cases where p is a quadruple point, or stationary
one. We can prove similarly in other cases.

(i) In the case where p is an ordinary quadruple point: In this case f−1(p) of X ,
which we denote by {q1, q2, q3, q4}. In a neighborhood of each qi (1<i<4), the map
f : X → Y is described as

f1 : (u1, v1, t1) → (0, u1, v1, t1) = (x, y, z, w),
f2 : (u2, v2, t2) → (u2, 0, v2, t2) = (x, y, z, w),
f3 : (u3, v3, t3) → (u3, v3, 0, t3) = (x, y, z, w),
f4 : (u4, v4, t4) → (u4, v4, t4, 0) = (x, y, z, w)

where (ui, vi, ti) (1<i<4) is a complex analytic local coordinate with center qi. Since
ID,p is generated by xyz, xyw, xzw, yzw, any element of OY (F −D)X,p is represented
by a local holomorphic function ϕ at p, which has the form

ϕ = yzw ϕ1 + xzwϕ2 + xyw ϕ3 + xyz ϕ4
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where ϕi
′s (1<i<4) are local holomorphic functions at p. Hence the pull-back of ϕ

by f , which consists of those of ϕ by fi
′s (1<i<4), are given by

(f∗1ϕ)(u1, v1, t1) = u1v1t1 ϕ1(0, u1, v1, t1),
(f∗2ϕ)(u2, v2, t2) = u2v2t2 ϕ2(u2, 0, v2, t2),
(f∗3ϕ)(u3, v3, t3) = u3v3t3 ϕ3(u3, v3, 0, t3), and

(f∗4ϕ)(u4, v4, t4) = u4v4t4 ϕ4(u4, v4, t4, 0).

Therefore, if f∗ϕ = 0 in f∗(OX(f∗F −D))p = OX(f∗F −D)f−1(p), ϕi (1<i<4) must
have the forms ϕ1 = xψ1, ϕ2 = yψ2, ϕ3 = zψ3 and ϕ4 = wψ4 with ψi (1<i<4) local
holomorphic functions at p. From this it follows that if f∗ϕ = 0 in f∗(OX(f∗F −
D))p, then ϕ = 0 in OY (F − D)X,p. Hence the homomorphism OY (F − D)X,p →
f∗(OX(f∗F − D))p is injective. Next we show that the homomorphism is surjec-
tive. Any element ξ of f∗(OX(f∗F − D))p is represented by a quadruplet of local
holomorphic functions ξi(ui, vi.ti) (1<i<4) defined at qi of the forms

ξi = uiviti ηi (1<i<4)

where each ηi (1<i<4) is a local holomorphic function at qi. Therefore, if we put

ϕ = yzw η1(y, z, w) + xzw η2(x, z, w) + xyw η3(x, y, w) + xyz η4(x, y, z),

then we have ξ = f∗ϕ where ξ = (ξ1, ξ2, ξ3, ξ4), that is, the homomorphism OY (F −
D)X,p → f∗(OX(f∗F − D))p is surjective. Therefore, the homomorphism OY (F −
D)X,p → f∗(OX(f∗F −D))p is an isomorphism.

(ii) In the case where p is a stationary point: In this case, f−1(p) is two points
of X , which we denote by {q1, q2}. In a neighborhood of each qi (1<i<2),the map
f : X → Y is described as

f1 : (u1, v1, t1) → (u2
1, v1, u1v1, t1) = (x, y, z, w),

f2 : (u2, v2, t2) → (u2, v2, t2, 0) = (x, y, z, w),

where (ui, vi, ti) (1<i<2) is a complex analytic local coordinate with center qi. Since
ID,p is generated by wy, zw, xy2− z2, any element of OX(f∗F −D)X,p is represented
by a local holomorphic function ϕ at p, which has the form

ϕ = wy ϕ1 + zw ϕ2 + (xy2 − z2)ϕ3,

where ϕi
′s (1<i<3) are local holomorphic functions at p. Hence the pull-backs of ϕ

by fi
′s (1<i<2), are given by

(f∗1ϕ)(u1, v1, t1) = t1{v1 ϕ1(u2
1, v1, u1v1, t1) + u1v1 ϕ2(u2

1, v1, u1v1, t1)}
= t1f

∗
1 (yϕ1 + zϕ2)(u2

1, v1, u1v1, t1),

(f∗2ϕ)(u2, v2, t2) = (u2v
2
2 − t22)ϕ3(u2, v2, t2, 0).

Therefore, if f∗ϕ = 0 in f∗OX(f∗F −D))p = OX(f∗F −D)f−1(p), yϕ1 + zϕ2 and ϕ3

must have the froms
yϕ1 + zϕ2 = (xy2 − z2)ψ1 and ϕ3 = wψ2,

where ψ1, ψ2 are local holomorphic functions at p. From this the injectivety of the
homomorphism OY (F − D)X,p → f∗(OX(f∗F − D))p follows. Next we show the
surjectivety of this homomorphism. First, we should note that ID,q1 and ID,q2 are
generated by v1t1 and u2v

2
2 − t22, respectively. Hence any element ξ of f∗(OX(f∗F −
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D))p is represented by a couple of local holomorphic functions ξi(ui, vi, ti) (1<i<2)
each of which is defined at qi and has the form as follows:

ξ1 = v1t1 η1,

ξ2 = (u2v
2
2 − t22) η2

where each ηi (1<i<2) is a local holomorphic function at qi. We represent η1 as

η1(u1, v1, t1) = η11(u2
1, v1, t1) + u1 η12(u2

1, v1, t1)

where η11 and η12 are local holomorphic functions at q1. Then, if we put

ϕ = yw η11(x, y, w) + zw η12(x, y, w) + (xy2 − z2) η2(x, y, z)

we have f∗
1ϕ = ξ1 and f∗

2ϕ = ξ2. Therefore, we conclude that the homomorphism
OY (F −D)X,p → f∗(OX(f∗F −D))p is surjective.

We apply Lemma 3.1 to F = [(n−5)H ], the line bundle determined by the divisor
(n− 5)H . Then, by (3.4) we have

χ(X,OX(f∗[(n− 5)H ] −D)) � χ(X,OY ([(n− 5)H ] −D)X)(3.5)

By (3.2),

χ(X,OY ([(n− 5)H ] −D)X) = χ(Y,OY ([(n− 5)H ] −D))
−χ(Y,OY ([(n− 5)H ] −X))

= χ(Y,OY ([(n− 5)H ] −D)) − χ(Y,OY ([(−5)H ]))
= χ(Y,OY ([(n− 5)H ] −D)) − 1 (Y = P 4(C))

(3.6)

Here the second equality follows from the fact that X is linearly equivalent to nH
and the third one from the fact [(−5)H ] = [KY ], the canonical divisor class of Y . By
(3.3),

χ(Y,OY ([(n− 5)H ] −D) = χ(Y,OY ([(n− 5)H ])) − χ(D,OY ([(n− 5)H ])D))

=
1
24

(n− 4)(n− 3)(n− 2)(n− 1) − χ(D,OD(n− 5))
(3.7)

where OD(n − 5) denotes OD ⊗OY OY ([(n − 5)H ]). Consequently, by (3.1), (2.1),
(3.5), (3.6) and (3.7), we have the following:

Theorem 3.2. —∫
X
c1c2 = −24χ(X,KX)

= −24χ(Y,OY ([(n− 5)H ] −D)) + 24
= −(n− 4)(n− 3)(n− 2)(n− 1) + 24χ(D,OD(n− 5)) + 24.

Note that, for a given D, χ(D,OD(n − 5)) can be calculated by computing the
Hilbert polynomial of the module OD(n− 5) on P 5(C).
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4. An application

The Todd class td(X) and the Chern character ch(TX) of the tangent bundle TX
of X are given by

td(X) = 1 +
1
2
c1 +

1
12

(c21 + c2) +
1
24
c1c2,

ch(TX) = 3 + c1 +
1
2
(c21 − 2c2) +

1
6
(c31 − 3c1c2 + 3c3).

By the Riemann-Roch theorem,

χ(X, TX) =
∫

X

ch(TX) · td(X).

Therefore, by Theorem 1.15, Theorem 2.1 and Theorem 3.2, we have a numerical for-
mula which gives the Euler-Poincaré characteristic χ(X, TX) = Σ3

i=0(−1)idimHi(X, TX)
with coefficients in the sheaf TX = OX(TX) of holomorphic vector fields on X .

Theorem 4.1. —

χ(X, TX) =
1
2

∫
X

c31 −
19
24

∫
X

c1c2 +
1
2

∫
X

c3

= −5
(
n

4

)
+ 5

(
n

3

)
− 20

(
n

2

)
+ 15

(
n

1

)
+(4n2 − 30n− 2m+ 85)m− 2(2n− 15)t+ (4n− 15)γ

−#Σs+ 4#Σq − 1
2
deg kC − 19χ(D,OD(n− 5)).
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