THE CHERN NUMBERS OF THE NORMALIZATION
OF AN ALGEBRAIC THREEFOLD
WITH ORDINARY SINGULARITIES

by

Shoji Tsuboi

Abstract. — By a classical formula due to Enriques, the Chern numbers of the
non-singular normalization X of an algebraic surface S with ordinary singularities in
P3(C) are given by ¢ =n(n—4)2 — (3n —16)m+3t — v, yc2 =n(n? —4n+
6) — (3n — 8)m + 3t — 2~, where n = the degree of S, m = the degree of the double
curve (singular locus) Dg of S, t = the cardinal number of the triple points of S, and
~y=the cardinal number of the cuspidal points of S ([E]). In this article we shall give
similar formulas for an algebraic threefold X with ordinary singularities in P*(C)
(Theorem 1.15, Theorem 2.1, Theorem 3.2). As a by-product, we obtain a numerical
formula for the Euler-Poincaré characteristic x (X, 7x) with coefficient in the sheaf
Tx of holomorphic vector fields on the non-singular normalization X of X (Theorem
4.1).

Résumé. — (Les nombres de Chern de la normalisée d’une variété
algébrique de dimension 3 & points singuliers ordinaires)

Par une formule classique due & Enriques, le nombres de Chern de la normalisation
non singuliere X de la surface algébrique S avec singularités ordinaires dans P3(C)
sont donné par y ¢ = n(n—4)2—(3n—16)m+3t—v, 4 cz =n(n?—4n+6)—(3n—
8)m + 3t — 2, ot n est le degré de points triples de S, m est le degré de la courbe
double (lieu singulier) Dg de S, t est le nombre de points triples de S, et vy est le degré
de points cuspidaux de S ([E]). Dans cet article nous donnons des formules similaires
pour une “threefold” algébraic X avec singularités ordinaires dans P*(C) (Théorém
1.15, Théorém 2.1, Théor—‘em 3.2). Comme application, nous obtenons une formule
numérique pour la caractéristique d’Euler-Poincaré x(X,7x) & coéfficient dans le
faisceau 7x de champs de vecteurs holomorpes de la normalisation non singuliére X
de X (Théorem 4.1).
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Introduction

An irreducible hypersurface X in the complex projective 4-space P*(C) is called
an algebraic threehold with ordinary singularities if it is locally isomorphic to one of
the following germs of hypersurface at the origin of the complex 4-space C* at every
point of X:

H)yw =0 (simple point)

i)zw =0 (ordinary double point)
1it)yzw =0 (ordinary triple point)
w)zyzw =0 (ordinary quadruple point)
v)zy? — 22 =0 (cuspidal point)
vi)w(zy? — 2%) =0 (stationary point)

(
(
(
(0.1) (
(
(

where (z,y,2,w) is the coordinate on C*. These singularities arise if we project
a non-singular threefold embedded in a sufficiently higher dimensional complex
projective space to its four dimensional linear subspace by a generic linear projection
([R]), though the singularities (iv) and (vi) above do not occur in the surface case.
This fact can also be proved by use of the classification theory of multi-germs of
locally stable holomorphic maps ([M-3], [T-1]). Indeed, in the threefold case, the
pair of dimensions of the source and target manifolds belongs to the so-called nice
range([M-2]). Hence the multi-germ of a generic linear projection at the inverse
image of any point of X is stable, i.e., stable under small deformations ([M-4]).

In [T-2] we have proved, for an algebraic threefold X with ordinary singularities
in P*(C) which is free from quadruple points, a formula expressing the Euler number
x(X) of the non-singular normaliztion X of X in terms of numerical characteristics of
X and its singular loci. Note that, by the Gauss-Bonnet formula, the Euler number
x(X) is equal to the Chern number [ c3, where c3 denotes the top Chern class of
X. In §1 we shall extend this formula to the general case where X admits quadruple
points. In this general case, we need to blow up X twice. First, along the quadruple
point locus, and secondly, along the triple point locus. It turns out that the existence
of quadruple points adds only the term 4#37q to the formula, where #XYq denotes
the cardinal number of the quadruple point locus ¥g. Using Fulton-MacPherson’s
intersection theory, especially, the excess intersection formula ([F], Theorem 6.3,
p.102), the blow-up formula (ibid., Theorem 6.7, p.116), the double point formula
(ibid., Theorem 9.3, p.166) and the ramification formula (ibid., Example 3.2.20,
p.62), we compute the push-forwards f.[D]?> and f.[D]® for D the inverse image of
the singular locus of X by the normalization map in order to know the Segre classes
s(J,X); (0<i<?2) of the singular subscheme J defined by the Jacobian ideal of X.
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In §2 we shall give a formula for the Chern number [y ¢} = —[Kx]3, where
[Kx] is the canonical class of X. The expressions for f.[D]? and f.[D]® obtained
in §1 enable us to compute it , because [Kx| = f*[X + Ky] — [D] by the double
point formula, where Ky is the canonical divisor of P*(C). In §3 we shall give a
formula for the Chern number f « c1c2. In fact, we shall calculate the Euler-Poincaré
characteristic x (X, Kx) with coeflicient in the canonical line bundle of X, which is
equal to —(1/24) [, cicz by the Riemann-Roch theorem. In §4, as a by-product, we
shall give a numerical formula for the Euler-Poincaré characteristic x(X,7x) with
coefficient in the sheaf 7x of holomorphic tangent vector fields on X.

Notation and Terminology

Throughout this article we fix the notation as follows:

:= P*(C) : the complex projective 4-space,

: an algebraic threefold with ordinary singularities in Y,

: the singular subscheme of X defined by the Jacobian ideal of X,

: the singular locus of X,

- the triple point locus of X, which is equal to the singular locus of D,

QNG = <

: the cuspidal point locus of X, precisely, its closure, since we always consider C
contains the stationary points,

Y7 : the quadruple point locus of X,

¥'5 : the stationary point locus of X,

ny: X — X : the normalization of X,

f:X — Y : the composite of the normaliztion map n+ and the inclusion 7 : X =Y,
J : the scheme-theoretic inverse of J by f,

D, T, C and Xq : the inverse images of D, T, C and g by f, respectively,
3s=TnNC : the intersection of T" and C'.

We put
n := deg X (the degree of X in P*(C)), m:=degD, t :=degT, v := degC.

Note that 7 and C' are non-singular curves, intersecting transversely at 33, and that
the normalization X of X is also non-singular. Calculating by use of local coordinates,
we can easily see the following:

(i) J contains D, and the residual scheme to D in J is the reduced scheme C,
ie.,, Zy = Ip ®1, Zc, where Z;, Ip, Zc are the ideal sheaves of J, D and C,
respectively (cf. [F], Definition 9.2.1, p. 160);

(ii) D is a surface with ordinary singularities, whose singular locus is T,
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(iii) D is the double point locus of the map f: X — Y, i.e., the closure of

foe X | #17(f(@) > 2} ;
(iv) the map fjp : D — D is generically two to one, simply ramified at C;
(v) the map fir: T — T is generically three to one, simply ramified at s.

Furthermore, we need the following diagram consisting of two fiber squares:

X// Y//

TTIJ( J{UT/

(0.2) x Ly

TZ(IJ/ J/UEH

X — Y,

)

which is defined as follows:

oxg:Y' — Y : the blowing-up of Y along the quadruple point locus X7 of X,
X' : the proper inverse image of X by osyg,
X =X XYY, : the fiber product of X and X over X,

ng X' — X' : the projection to the second factor of X x+ 7/, which is nothing
but the normalization of 7/,

f'+ X" =Y’ the composite of the normaliztion map n< and the inclusion
7:X <Y,

Yq : the inverse image of the quadruple point locus g of X by f,

Tsig : X' — X : the projection to the first factor of X x+ Y,, which is nothing but
the blowing-up of X along Xq,

ﬁ,, T/, C' and ©3 : the proper inverse images of D, T, C and X3 by ox3, respectively.

D', T" and C’ : the proper inverse images of D, T and C by 754, which are equal to
— = —

the inverse images of D', T and C" by f’, respectively,

Y’ : the inverse image of Xs by 754, which is equal to T N C’,

oz 1 Y"” — Y’ : the blowing-up of Y’ along TI,

X" . the proper inverse image of X by o7,

X" = X" x5 X" : the fiber product of X’ and X" over Y,,

ngr : X" — X" : the projection to the second factor of X' x < X", which is nothing

but the normalization of X

f" X" =Y" : the composite of the normaliztion map n< and the inclusion

VX s Y”,

7 X" — X' : the projection to the first factor of X’ x— YN, which is nothing but

the blowing-up of X’ along T”,

ﬁ”, TN, C" and X5": the proper inverse images of El, T,, C' and ¥3 by o7,

respectively,
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D", T" and C" : the proper in/\lferse imlages of D', T' and C' by 77/, which are equal
to the inverse images of D, T and C' by f”, respectively,
Y¥s” : the inverse image of s’ by 77/, which is equal to T N C".

We also use the following notation throughout this article:

[a] : the rational equivalence class of an algebraic cycle a,
a - 3 : the intersection class of two algebraic cycle classes [@] and [5].

Finally, we give the definitions of regular embeddings and local complete intersec-
tion morphisms of schemes.

Definition 0.1. — We say a closed embedding ¢ : X — Y of schemes is a regular
embedding of codimension d if every point in X has an affine neighborhood U in Y,
such that if A is the coordinate ring of U, I the ideal of A defining X, then I is
generated by a regular sequence of length d.

If this is the case, the conormal sheaf /72, where Z is the ideal sheaf of X in
Y, is a locally free sheaf of rank d. The normal bundle to X in Y, denoted by
NxY, is the vector bundle on X whose shef of sections is dual to Z/Z?. Note that
the normal bundle NxY is canonically isomorphic to the normal cone CxY for a
(closed) regular embedding ¢ : X — Y since the canonical map from Sym(Z/Z?) to
S = %2 I%/I* ! is an isomorphism (cf. [F], Appendix B, B.7).

Definition 0.2. — A morphism f : X — Y is called a local complete intersection
morphism of codimension d if f factors into a (closed) regular embedding ¢ : X — P of
some constant codimension e, followed by a smooth morphism p : P — Y of constant
relative dimension d + e.

1. The computation of [, cs

In [T-2] we have proved, for an algebraic threefold X with ordinary singularities in
P*(C) which is free from quadruple points, a formula expressing the the Euler number
x(X) of the non-singular normalization X of X in terms of numerical characteristics of
X and its singular loci. We recall its proof briefly. We have first proved the following:

Theorem 1.1. — ([T-2], Theorem 2.1) We have a linear pencil £ = Jycp1 Xx
on X, consisting of hyperplane sections X of X in P*(C), whose pull-back L :=
Usepr X to X by the normalization map f : X — X has the following properties:
There exists a finite set {\1,-+- ,\c} of points of P' such that

(i) X is non-singular for A with A # \; (1<i<c), and

(ii X, s a surface with only one isolated ordinary double point which is contained

in _
X\ fHCx) for any i with 1<i<c,

where c is the class of X, i.e., the degree of the top polar class [M3] of X in P*(C)
(cf. [P]), and Cx the base point locus of the linear pencil L, which is an irreducible

curve with m (= deg D) ordinary double points in P?(C) whose degree is equal to
n (=deg X).
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Let 0 : X — X be the blowing-up along Cog := f~(Cs), and L := Usep X, the
proper inverse of £ := [J,cp Xx. Then L gives a fibering of X over P'(C). Hence
the Euler number (X)) of X is given by

X(X) = x(PHOX(X) + S5 (x(Xn,) = x(X2)
= 2x(Xy) —c

where )/5\ denotes a generic fiber of the fiber space X — Pl. The second eq}t\lality
above follows from the fact that a topological 2-cycle vanishes when A — A; for

j=1,---,c. We put E:= 071(Cs). Then, since )?\E: X\ Cx,

X(X) = x(X) = X(E)—x(Cx0)
= X(PI(C))X(COO) - X(Coo)
= X(Coo)
Hence,
(1.1) X(X) = x(X) = x(Cx) = 2x(X)) = x(Cx) — ¢

— 2(X)) — x(Co) —c.

Since C, is a curve whose degree is equal to n with m ordinary double points in
P?(C), the genus g(Cx) is given by

9(C) = %(n D —2)—m.
Hence,
(1.2) X(Cx) =2-29(Cx) =2—(n—1)(n—2) + 2m.

Note that X is a surface with ordinary singularities in a hyperplane Hy ~ P3(C) of
degree n, whose numerical characteristics related to its singularitis are as follows:

the degree of its double curve Dy = m
#{triple points of X—,\} =t, #{cuspidal points of X,} = .
Therefore, by the classical formula,
(1.3) X(X»)) =n(n® —4n +6) — (3n — 8)m + 3t — 2y
By (1.1), (1.2) and (1.3), we have the following:
Proposition 1.2. — (|T-2], Proposition 2.2)
X(X) = 2n(n?—4n+6) —2(3n — 8)m + 6t — 4y
(1.4) —24+(n—1)(n—-2)—2m—c
= n2n? - +9)—2(3n—T)m+ 6t — 4y —c

Even if X admits quadruple points, Theorem 1.1 and Proposition 1.2 above can be
proved without change of their proofs in [T-2]. Hence what we have to do is compute

the class c of X, i.e., the degree of the top polar class [M3] of X in P4_(C). By the
result due to R. Piene ([P], Theorem (2.3)), the top polar class [M3] of X is given by

(1.5) [M3] = (n—1)3h3 = 3(n — 1)?h2 N sy — 3(n — 1)h N 81 — S0,

where h denotes the hyperplane section class and s; i-th Segre class s(J,X); (0<i<?).
Since fis(J, X); = s(J, X); (0<i<?2), it suffices to compute the Segre classes s(J, X);
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and their push-forwards by f. To compute the Segre class s(J, X);, the following
proposition is useful.

Proposition 1.8. — |, Proposition 9.2, p.161) Let D C W C V be closed embed-
dings of schemes, with V' a k-dimensional variety, and D a Cartier divisor on V. Let
R be the residual scheme to D in W. Then, for all m,

W, V) = (D, V) + S0 (’“ . m) =DV - s(R. V)

in A (W), the m-th ratinal equivalence class group of algebraic cycles on W.

In our case, since D = f~%(D) is a Cartier divisor, its normal cone Cp X to D in X
is isomorphic to Ox (D) p, the restriction to D of the line bundle Ox (D) associated
to D. Therefore, the total Segre class s(D, X) of D in X is given as follows:

s(D.X) = e(Ox(D)p)~'N[D]
[D] = e1(Ox(D)p) N [D] + e1(Ox (D)jp)* N [D]
= (D)~ [DP + [DP"
Since C' is non-singular,
¢(Ngyx)~' N [C] = [C] = e1(Neyx) N [C).
Hence, applying Proposition 1.3 above to W = J, D = f~}(D) and R = C, we have
S(JvX)Q = [D]
(1.6) s(J, X)1 = =[D]* +[C]
S(J,X)o = [D]3 - CI(NC/X) N [C] -3D-C

where N¢,x is the normal bundle of C'in X. Since f.[D] = 2[D], it follows from the
first identity in (1.6) that

s(J,X)2 = 2[D].
In what follows we use the notation in the diagram (??) freely without mention.
Lemma 1.4. —

* [T) Y ~/
(1.7) 054[D] = [D'] + 65, Z[Hé],
q

where H is a hyperplane of Eg := 0561 (@) ~ P3(C) for each quadruple point q, and
7 the inclusion map Y5E; — Y’

Proof. — : Since the multiplicity of D at each quadruple point g of X is 6, (1.7)
follows from the blow-up formula ([F], Theorem 6.7, p.116 and Corollary 6.7.1, p.117£

We consider the following fiber square:

Em —— Y"

(1.8) 5'1 law

—/
T — Y,
Z/

where Em = P(NzY') is the exceptional divisor of the blowing-up oz, which is
a P?(C)-bundle over TI, and p” : Er — T is the projection to the base space
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of this bundle. We denote by ONT,YI( ) the canonical line bundle on E=, and by
ONT,YI(—l) its dual, or the tautological line bundle on Ex.

Lemma 1.5. — o, [5/] 1s expressed as
(1.9) 02D = [D"] + 37 &) + T2 7" [ow]

where [§7] = c1(On, vy (1)) N [E] and [ao] an algebraic 0-cycle class on T.

By the blow-up formula,
(1.10) o5, [D] = [D"+ 7 {c(E")NF"*s(T D)}
where £ =p"*NwY'/Ng_,,Y" =" Ny Y'/ON_, v/ (1) and S(T/,ﬁl) is the total
Segre class of T in D'. Since
c1(B") =p"ei(NpY') — c1(Ong v (-1)) = 7" et (N Y') + e1(Onery v (1)),
we have
{(E")YNs(T, D)}y = 7"7s0(T,D)+ecr(E")NF"*s:(T,D)
— — — —/
(1.11) = p"{s50(T, D) +cr(NgY')Ns1(T, D)}
+c1(Ongy (D) NF"s1(T, D)

To compute S(T,,ﬁ/), we consider the normalization map np : D" - D. D" is

non-singular. Hence, if we put 7' := nﬁl(T ), we have
S(Tl*,ﬁ/*) _ (N—/*bl*)_l [T/*]
= (-aWr-D)n{’]
_ [ ] —/* . T/*.
Therefore,

/% —/%

s(T\ D) =ng s(T" D) =3[T ] —ng (T -T"),

and so,
— e
(1.12) { g, g/; i 3—%;@ T
By (1.11) and (1.12), if we put [ag] := —ngy (T -T ) + 31 (N Y') N [T],
{e(B") N s(T' D)o = 5" [ow] + 3[&7].
Cosequently, by (1.10), we obtain (1.9). O

By Lemma 1.4 and Lemma 1.5 we have the following;:
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Lemma 1.6. —
(1.13) 030%5(D) = [D"] + 37, [&7] + 7.7 o) + 6L, ZH”

where [§7] = c1(On_, v/ (1)) N[Eg] and [ao] an algebraic 0-cycle class on T/, HY the
proper inverse image of Hy by o, and 7' the inclusion map YgEy — Y" where Ef;
is the proper inverse image of Eg by o=.

Proposition 1.7. —

(1.14) f”*[bﬂ] = fr* [7”] D — [D//]Q —[C"]

Proof. — : Since D" is regularly embedded in Y, i.e., C5Y" ~ Np»Y" while D

is not, we can apply the excess intersection formula ([F], Theorem 6.3, p.102) to D"
Thfﬁl denoting the tangent bundle of a non-singular algebralc varlety, say Z, by 1z,
we have

f//*[ ”] _ Cl(f//*NBHY”/ND//XH) N [D//]
(1.15) = {Cl (f”*Ty//) — Cl(f//*T—H) —C1 (TXH) +c1 (TD//)} n [D//]
D
= {a(f"Ty») —a(Ix)}n[D"] - C",
where the last equality follows from the ramification formula ([F], Example 3.2.20,

p.62). On the other hand, by the double point formula ([F], Theorem 9.3, p.166,
Example 9.3.4, p.167),

(1.16) (D7) = f X" = {er(f"* Tyn) = ex(Txcn)} O [X"].

By (1.15) and (1.16), we obtain (1.14). O
Proposition 1.8. —

(L17)  fro3g[D] = f*[X]- D' = (D' = [C') + [T') + 6K, > [H],

q

where H is a hyperplane of qul (q) := E, ~ P?(C) for each point q of ¥q, and k' the
inclusion map L,E, — X'.

Proof. — : We first note that

fl*UZq [_] - TT'*T’;" f/* U;‘,q [E_]
= TT/*f,/*O—f/O-Eq [D]

The first equality above follows from the fact that 77+ is the blowing-up of X’ along
7', and the second one from the commutativity of the upper fiber square in (0.2).
Therefore it suffices to compute the image of each term on the right ha}nd side in
(refell3) by 7. f"*. First, we Wlll compute the image by f"*. f"*[D] is given

by (refel14). To compute f”* (3] [§’ ]+ ]*p”*[ 0]), we consider the following fiber
square:

(1.18)

.11

Ep _J X

(1.19) p”l lw
T/ - Xl
LI
where Er: = P(Np X') is the exceptional divisor of the blowing-up 77/, which is a
PY(C)-bundle over T”, and p” : Ep+ — T’ is the projection to the base space of this
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bundle. There is a set of morphisms from the diagram in (1.19) to the one in (1.8)
induced by those in the upper fiber square in (0.2). We denote by ¢’ and ¢” the
restriction of f/ : X’ — Y’ to T’ and that of f” : X" — Y" to Er+, respectively.
Note that the morphism ¢” : Er» — Ez maps each fiber of p” : B — T to that
of o' : Bz — T', and so g"* (&7] = [€77], where [7/] = ¢1(On,, x/(1)) N [E7/]. Since
f" X" = Y" and ¢" : Erw — Ez are local complete intersection morphisms of the
same codimension, we can apply Proposition 6.6, (c) in [F] (p.113) to the fiber square

ET’ g—) ET/

(120 o &%

Xl/ Yl/.

fl/
Then,
w1 . * .
(1.21) "5 ] = 5l (6] = €], and
* = 1 =/ k—//% . * Ik

(1.22) f75. 0" o] = 9" P o] = 3" 9" o]
To compute f'* (GZ:ZE[Hg 1), we consider the following fiber squares:

S.E — X" SeE. —— v
(123) q”J/ J/TT/ a”J/ J/G'T/

EqEq T )(/7 EEEE T) Yl.

%

As before there is a set of morphisms from the diagram on the left to the one on the
right in (1.23) by those in the upper fiber square in (0.2). We denote by h’ and h”
the restriction of f’ to ¥, E, and that of f”: X" — Y" to ¥,E;, respectively. Since
f7e X" = Y" and b 2 X, B — YgEy are local complete intersection morphisms of
the same codimension, we have

(1.24) FUOHY) = 000 [HY).

Similarly, applying the same arguments for f': X’ — Y’ and b’ : ¥ E; — XgE7, we
have

(1.25) R Hy) = KW Hy) = KL[Hy).
Since h/l*a/l* — ql/* h/* and [Hg] — al/* [Hé]v

K;’h”* [Hg] — g;{hl/*ql/* [Hé]
(1.26) = (g W*[HY

= g (H]).

Further, since 77/ : X" — X’ and ¢" : ¥ E; — Y E, are local complete intersection
morphisms of the same codimension,

(1.27) g™ [H,] = 7.k, [H,].
Therefore, by (1.24), (1.26) and (1.27),

x5 *
(1.28) O HY | = m kL [H).

Cosequently, by (1.13), (1.14), (1.21), (1.22) and (1.28),
J" o0 (D) = 7 [X] - D" — (D" — [C"] + 35 [ + 41" o] + 6 kL S [H,)



CHERN NUMBERS OF ALGEBRAIC THREEFOLDS 11

Since 77, [C"] = [C"], Trruj[&r] = [T"], 145 p"" 9" [aw] = 0 and 7p .77, kL [Hy] =
K, [H}], by (1.18) and the equality above, we have

(120 oDl = (X D) — 0P 0]
+3[T"] + 6k, X [H}].
Since 77, (D) = (D] + 2( 7],

(1.30)  7ru(f[X]-D") = 7prn (f™[X ] - 73 [D') = 2f (X ] - Erv).
. * —/ e
On the other hand, since o7, [X'| = [X ] + 3[EF],

11

X = ok X - 3B,

T
Hence,
(P X D) = (X)) D
= (0L [X) - 3[Br) - D/
(1.31) = o (fon (X)) D
= 1 (r X)) DY
XD,
and
o (fX) Br) = mren((f"0 *[_]>-ETf—3[ETf]2)
(1.32) =

L 307 (X)) + 3. e
§ %) T [Br] + 3T = 3(T7)

Therefore, by (1.30), (1.31) and (1.32),

(1.33) e (f X D) = fHX]- D = 6[T7).
Furthermore, we have
mru[D"? = Trn((7[D'] - 2[Er])?)
(1.34) = 1r((13:[D'))? = 473, [D'] - [Br] + 4[Er]?)
' = (ot [D']) - [D'] = A[D'] - 7o [Err] — A7 [§17]
[D']? = 4[T"].
Consequently, by (1.29), (1.33) and (1.34), we obtain (1.17). O

Proposition 1.9. —

(1.35) f*[D] = f*[X]- D — [D]* = [C] + [T]

Proof. — Since 7sq. f*035[D] = 5475, f*[D] = f*[D], m24:[C"] = [C], 754:[T"] =
[T] and T4« [H;] = 0, by Proposition 1.8, we have

(1.36) F*[D] = 7qu(f*[X] - D) = m2q:[D'] = [C] + [T,
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Since 73, [D] = [D'] + 3[34E,], we have
Teq DT = T (15,[D] — 3[4 E,])%)
(1.37) = Tzgx (qu[D])Q — 67sgx (quD EqEq) + 9 Tsgs [EqEq]2
[D]2 —6D - TS qx [Ezq] — gkiTzq* [E(IH(/I]
[D]?,
where H| is a hyperplane of E, ~ P?(C), and

(1.38) Tuge (f*[X'] - D) = Tsge (f*[X] - 785, [D)) = 3 72qu (f*[X ] Sy By).

/

On the other hand, since os3[X| = [X | + 4[25E4],

/

frIX] = fo5g(X] - 45, B,

Hence,
Toge (X 754 [D)) = 7oge (F7 054 X - 7554 [D]) = 4 75200 (2 By - 75, D))
(1.39) = Tugs ([ 054(X]) - [D] = 4754 (5S¢ Ey) - [D]
= TeqTse S [X]- [D] = f[X] - [D],
and
T (f* (X1 S4By) = Toqe (£ 055 [X] - BgBy) — 4754 [0 By
(1.40) = qu*_(quf*[X] Y0Ey) + 415 (KX H/)
SHX] - Tqu[EqEq] = 0.

Therefore, by (1.38), (1.39) and (1.40),
(1.41) e (f*[X]- D) = f[X] - [D).
Consequently, by (1.36), (1.37) and (1.41), we obtain (1.35). O

Since f.[X]| = [X], f«[D] = 2[D], f«[T] = 3[T| and f.[C] = [C], by Proposition

1.9, we have the followmg

Corollary 1.10. —

By Proposition 1.9,

(1.42) [D)? = f*[X]- D — f*[D] — [C] + [T].

Hence, by the second equality in (1.6),
s(J,X) = —f*[X]- D+ f*[D] +2[C] - [T,

and so, by the projection formula,

s(J,X)1 =X -D - 3[T| +2[C].

We are now going to compute s(J, X)g. Since s(J, X)o = f.s(J, X)o, it suffices
to know the push-forward of each term of the right hand side of the last identity in

(1.6). By (1.42),
(1.43) D] = f*[X]-[D)?— f*[D] - D-D-C+D-T.
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To realize f.[D]?, we compute the push-forward of each term on the right hand side
of (1.43). By the projection formula and Cororally 1.10,

LX) DP) = [X]- f]DP?
(144 — [X]2-[D]+3[X]- T [X] C.

Since f.[D] = 2[D], by the projection formula,

(1.45) HIBD) = BLLD

To realize f.[D - C], we compute f*[C]. Since C is regularly embedded in Y, we can
apply the excess intersection formula to it. Then,

f*[C] a([*NgY/NeX)N|[C]
= {a(f"Ty) —a(["Ts) — a(Tx) + a(lc)} N [C]
{ei(f*Ty) —er(Tx)} N [C]

f1X1-¢-Db-C,

(1.46)

where the last equality but one follows from the fact C ~ C and the last equality
from the double point formula for f : X — Y. Therefore, by (1.46) and the projection
formula, we have

f*(D'C) f*[C]__gf*[X]

C-C-X=0

<l >

(1.47)

To realize f.(D -T), we compute f*[T]. Since T is not reqularly embedded in Y, we
cannot apply the excess ini(;rsection formula to T. But, since T is regularly embedded
in Y’, we can apply it to T'. Then, by the same way as in the case of C,

(1.48) AT = f*[X]-T' - D -T' — [2¢]

Here the term [¥s'] comes from {ci(f*Tw) — c1(T7+)} N [T'] = [Ss'], which is the

ramification formula for f"T,.

Lemma 1.11. —

N e

(i) 034(T] = [T'] + 4%q[Hg)?,

(i) 75, [T] = [T"] + 3%, [H}],
where Hé is a hyperplane of Eg = 0561 (@) ~ P3(C) for each quadruple point § and
Hy that of E, := Tz_ql(q) ~ P2(C) for each point q of f~*(Xq).

Proof. — : Since the multiplicity of T (resp. T) at each quadruple point g (resp.
at each point q of f71(X7)) is 4 (resp. 3), (i) (vesp. (ii)) follows from the blow-up
formula ([F], Theorem 6.7, p.116, and Corollary 6.7.1, p.117). O

Proposition 1.12. —

(1.49) fT)=f[X]-T—-D-T —[Ss] + [3q]
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Proof. — : Since f™*(4Xg[H}]?) = 4%4[H}]?, by Lemma 1.11, (i) and (1.48),
aso)  JToElll = ST+ AR H P
fHX]-T =D T =[S + 45, [H] ]2
Since
(1.51) FT) = 12qum35g f7[T) = msgu 0551,

it suffices to compute the push-forward of each term on the right hand side in (1.50) by

Tsig« in order to know f*[T]. Since o3[X] = [Y/] +4[X5E;] and f*[XqEq] = [EqEq],
by Lemma 1.11, (ii),

g (X T = roqe(f* 05 [X] = A0 Ey)) - (75,[T) = 3[Z,Hy))
(1.52) T (75 F7IX]) - 755 [T] = 4[5 Eo] - 75, [T]

_3T§qf*[X] : [EqHé] + 12[8 E,] - [EqH(/]])
= [*[X]-T - 12[%q].

Here the second equality follows from the commutativity of the lower fiber square in
(0.2) and the third one from the projection formula and the following facts:
Tsgx[EqEq) = 0,

Tsgx[SqHy| = 0,

[EqEq] : [EqH(II] = _Eq[H(llPa

T (B[ Hgl?) = [2q].

Since 73, [D] = [D'] + 3[X4E,], by Lemma 1.11, (ii),

(1.53)

D'-T" = (13,[D] = 3[3qEqg]) - (755, [T] — 3%,[Hg))
= 754D - 754 [T] = 3(7534[D] - Bg[Hy]) — 3([Esg] - 754 [T1) + 9[Eq] - 3q[Hy)
Hence, by the projection formula and (1.53),
(1.54) Tsg«(D'-T') =D - T — 9[Xq]
Consequently, by (1.51), (1.50), (1.52), (1.54) and the fourth equality in (1.53),
=

*[X]-T —12[3q] — D - T 4 9[Xq] — [Zs] + 4][3¢q]

f
FX|-T-D T —[Ss] + [2q.

Corollary 1.13. —
(1.55) f«[D)® =[X)?-[D] - 2[D]* +5X - T — X - C — [¥3] + 4[Xq].

Proof. — : By Proposition 1.12,
DT = f[X]-T - f*[T) - [Ss] + [Sq.
Hence,
f«(D-T) = 3X-T—-X-T-[23]+4[Xq|
(1.56) — OX.T—[¥5 + 4[5
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By (1.43), (1.47), (1.56) and Corollary 1.10,

LDP = [X]- £DP? = 2[D]? + 2X - T - [£3] + 4[5q]
= X] -D+3X - T-X-C— [D] +2X-T — [23] + 4[X7]
X]2.-D+5X-T—X-C—2[D)? - [%3] + 4[%q]
O
Since
S(jay)o = f*S(J’X)O
(157) = DI = feer(Neyx) N[C) = 3£.(D - C)
f*[D]g_fxcl(NC/X)m[C] (Cf (147))7
X)o. By the

what remains is to compute f.c1(Neo/x) N [C] in order to know s(J,

adjunction formula, the double point formula for f: X — Y and (1.46),

Cl(NOX) N [C] = —Kx-C+ [kc]

= (=f'[ X+ Ky|]+D)-C+ [kc]
[ [Ky]- C = fr[C] + [kc],

where Ky, Kx and k¢ are the canonical divisors of Y, X and C, respectively. There-
fore, by the projection formula and the fact C' ~ C,

(1.58) filaa(NeX)N[C]) = —-Ky-C—-X-C+ [kg]
Substituting (1.55) and (1.58) into (1.57), we have
s(J,X)o=[X]>-D-2[D*+5X - T+ Ky - C — [kg] — [Z5] + 4[>q].

We collect the results concerning the Segre classes of X obtained up to this point
in the following proposition:

Proposition 1.14. — The Segre classes of the singular subscheme J, defined by the
Jacobian ideal, of an algebraic threefold X with ordinary singularities in the four
dimensional projective space Y = P*(C) are given as follows:

s(7,X)2 =2[D]
s(J,X) =—X-D—3T +2C
s(J,X)o=[X]?>-D-2[DP>+5X -T + Ky - C — [kg] — [£3] + 4[>7].

Here D, T, C, ¥5 and %G are the singular locus, triple point locus, cuspidal point
locus, stationary point locus and quadruple point locus of X, respectively. Ky is the
canonical divisor of the projective 4-space Y, and kg that of C.

Note that the effect of the existence of quadruple points of X is only the term 4[%7]
in the expression of s(J, X)o.

Then, by Proposition 1.14,
deg sy = 2m
degsy = —nm + 2y — 3t
deg so = n’m — 2m? + 5nt — 5y — #3535 — deg ke + 443G,
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where n = deg X (the degree of X in Y), m = degD, t = degT, v = degC,
and #X35 = the cardinal number of 35, and #Xq = the cardinal number of ¥g.
Consequently, by (1.5), the class ¢ of X is given by

¢ = deg[Ms] = (n—1)*deg X —3(n — 1)?deg so — 3(n — 1)deg s1 — deg so
= (n—1)%— (4n® —9n —2m +6)m + (4n — 9)t — (6n — 11)y
+ #X5 + deg ke — 4437
By this formula together with Propsition 1.2, we have the following:

Theorem 1.15. — The Euler number x(X) of the non-singular normalization X of
an algebraic threefold X with ordinary singularities in P*(C) is given by

/ 3 =x(X) = —n(n®—5n?+10n — 10) + (4n* — 15n — 2m + 20)m — (4n — 15)t
X

+ (6n — 15)y — #X35 — deg kz + 4#X7.

Here n = deg X, m = degD, t = degT and v = degC are the degrees of X, the
singular locus, the triple point locus and the cuspidal dpoint locus, respectively. #X35 is
the cardinal number of the stationary point locus ¥5, deg k& the degree of the canonical

divisor of the cuspidal point locus C, and #Xq the cardinal number of the quadruple
point locus 3q.

2. The computation of [, ¢}

By the double point formula, the canonical class [Kx] of X is given by

(2.1) [Kx] = f*[X + Ky] - [D] = f*[(n = 5)H] - [D].
where H is a hyperplane in Y = P*(C). Therefore,
[Kx]? (f*[(n —5)H] - [D])?

(f*[(n = 5)H])* = 3f*[(n = 5)H])* - D + 3f*[(n — 5)H] - [D]> — [DJ?

= [*((n=5)’[H]?) = 3f*[(n —5)*[H]*| - D+ 3f*[(n — 5)H] - [D]* - [D]>.
Hence, by the projection formula, Corollary 1.10 and Corollary 1.13,
flEX]? = (n—5)°[H]-X —6[(n—5)*[H]*- D+ 3(n - 5)[H]) - f.[D]” - f.[D]’

= (n—5)73H] X —6(n->5)72H* - D+3(n-5)[H] (X -D+3[T)-[C))
—[X)>- D+2[DP?-5X-T+ X -C+ 23] — 4[%q].

Cosequently,
deg [Kx]* = deg fu[Kx]®
= n(n—>5)°—-6(n—>5)7%m+3(n—5)(nm+3t—7)
—n2m 4 2m? — dnt + ny + #5535 — 44X
Since [y ¢} = —deg[Kx]?, we have the following proposition.
Theorem 2.1. — The Chern number fX c3 of the normalization X of an algebraic

threefold X in P*(C) is given by the following formula:
/ & = —n(n—>5)734+6(n—>5)2m—3(n—>5)(nm+ 3t —7)
X

+n%m — 2m? + 5nt — ny — #335 + 4#57.



CHERN NUMBERS OF ALGEBRAIC THREEFOLDS 17

3. The computation of [, cic,

By the Riemann-Roch theorem for a non-singular threefold, we have
1
(3.1) X(X, Kx) = ——/ C1C2
24 [«

Therefore, if we can express x(X, Kx) in terms of numerical characteristics of X,
then we can do the same for the Chern number cjco. This is what we are going to
do in the following. For a line bundle F on Y, we denote by Oy (F) the sheaf of
l%cal holomorphic cross-sections of F' over Y. Furthermore we define the following
sheaves:

Oy (F - D) Oy (F) ®oy Ip,
Oy(F-X) = Oy(F)®o, Ix,
Oy(F)5 = Oy(F)/Oy(F—D), and
Oy(F —D)x := Oy(F-D)/Oy(F-X),

where 75 and I+ denote the ideal sheaves of D and X in Oy, respectively
Lemma 3.1. — There exist the exact sequences of sheaves
(3.2) 0— Oy(F—-X)— Oy(F—-D)— Oy(F—D)x— 0,
(3.3) 0— Oy(F — D) — Oy(F) — Oy (F)5 — 0,
over'Y and the isomorphism of sheaves
(3.4) f(Ox(f*F - D)) ~Oy(F - D)x
Proof. — : The exactness of the sequences in (3.2) and (3.3) follows from the defini-

tions of the sheaves Oy (F — D) and Oy (F)5. In what follows we shall prove the
existence of the isomorphism in (3.4). Let p be a point of X and (z,y, z,w) a local
coordinate with center p in Y such that X is defined by one of the equations in (0.1)
in the introduction in an open neighborhood of p in Y. An element of Oy (F' —3)2]9,
the stalk of the sheaf Oy (F — ﬁ)y at p, can be represented by a local holomorphic
function, say ¢(z,y, 2z, w), defined in an open neighborhood of p, which vanishes on
D. The map which assignes f*p € Ox (f*F — D)s-1(p) , the pull-back of ¢ by f, to
¢ € Oy (F — D)x , defines the homomorphism of sheaves in (3.4). We are going to

show that it is an 1somorphlsm in the cases where p is a quadruple point, or stationary
one. We can prove similarly in other cases.

(i) In the case where p is an ordinary quadruple point: In this case f~!(p) of X,
which we denote by {q1,92,¢3,q4}. In a neighborhood of each ¢; (1<i<4), the map
f+X =Y is described as

f12(U1,’U1,t1)—>(0 ul,vl,tl) ( )

fo i (u2,v2,t2) = (u2,0,va,t2) = (z,y,2,w),

f3 1 (u3,vs,t3) — (u3,v3,0,13) ( )

fa i (ug,vq,t4) = (ug,v4,t4,0) = (z,y,2,w)
where (u;,v;,t;) (1<i<4) is a complex analytic local coordinate with center g;. Since
I5 Dpls generated by zyz, ryw, rzw, yzw, any element of Oy (F — D) p 18 represented
by a local holomorphic function ¢ at p, which has the form

P =Yzw P + TZW P2 + TYW 3 + TYZ P4
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where ¢;’s (1<i<4) are local holomorphic functions at p. Hence the pull-back of ¢
by f, which consists of those of ¢ by f;’s (1<i<4), are given by

(fio)(ur, v, t1) = wvits p1(0,u1,v1,t1),
(f30)(uz,v2,t2) = wugvats p2(u2,0,v2,t2),
(f3 (p) (U37 V3, t3) = ’U,3’U3t3 @3 (U3, V3, 0, tg), and
( )(U4, V4, t4) = U4U4t4 Y4 (U4, V4, t4, 0)

Therefore, if f*o = 0in f(Ox(f*F—D)), = Ox(f*F—D)s-1¢p), vi (1<i<4) must
have the forms o1 = 211, Y2 = yha, w3 = z1ps and py = wipy with wz (1<i<4) local
holomorphic functions at p. From this it follows that if f*¢ = 0 in f,(Ox| (f*F —
D))p, then ¢ = 0 in Oy (F — D)% % - Hence the homomorphism Oy (F — D)%
f«(Ox(f*F — D)), is injective. Next we show that the homomorphism is surJec—
tive. Any element & of f.(Ox( f F — D)), is represented by a quadruplet of local
holomorphic functions &;(u;, v;.t;) 1<z<4§ defined at ¢; of the forms
fi = u;vt; 1; (1SZS4>
where each 7; (1<i<4) is a local holomorphic function at g;. Therefore, if we put

¢ =yzwm(y, 2, w) + zzwne(z, z,0) + Yywnz(z, y, w) + ryzm(z, y, 2),
then we have { = f*¢ where { = (&1, 62, &3,&), that is, the homomorphism Oy (F —
D)%, — [«(Ox(f*F — D)), is surjective. Therefore, the homomorphism Oy (F —
3)219 — [«(Ox(f*F — D)), is an isomorphism.

(i) In the case where p is a stationary point: In this case, f~1(p) is two points
of X, which we denote by {g1,g2}. In a neighborhood of each ¢; (1<i<2),the map
f X —Y is described as

fl : (ulavlatl) - (ufvvlvulvlatl) = ($7yvsz)7
f2 1 (uz,v2,t2) — (uz, v2,12,0) = (z,y,2w),
where (u;, v, t;) (1<i<2) is a complex analytic local coordinate with center ¢;. Since

15, 1s generated by wy, zw ,xy? — 22, any element of Ox (f*F — D) » 18 represented
by a local holomorphic functlon %) at p, which has the form

¢ = wypr + 2w+ (xy® — 2%) s,
where ;’s (1<i<3) are local holomorphic functions at p. Hence the pull-backs of ¢
by fi’s (1<i<2), are given by
(fie)(ui,vi,t1) = ti{vr o1(ud, vi, urvr, 1) + urvr p2(ud, vi,ugvr, 1)}
= tfi(yer + 2p2) (uf, v1, w01, 1),

(f50)(uz,v2,ta) = (uzv3 — t3)p3(ug, va, t2,0).
Therefore, if f*p =0in f,Ox(f*F — D)), = Ox(f*F — D) -1, yo1 + 22 and @3
must have the froms
yp1 + 22 = (xy® = 2%)P1 and g3 = wiy,

where 11,12 are local holomorphic functions at p. From this the injectivety of the
homomorphism Oy (F — D)% . — f«(Ox(f*F — D)), follows. Next we show the
surjectivety of this homomorpﬁlsm First, we should note that Zp 4, and Zp 4, are
generated by v1t; and ugvs — t3, respectlvely Hence any element & of F+(Ox( f*F —
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D)), is represented by a couple of local holomorphic functions &;(ui, vi,t;) (1<i<2)
each of which is defined at ¢; and has the form as follows:

& = wvitim,
£ = (uvd —13)m2
where each 7; (1<i<2) is a local holomorphic function at ¢;. We represent 77 as
i (ur, v, t1) = o (uf, v, tn) + ug me(uf, v, tr)
where 711 and 712 are local holomorphic functions at g;. Then, if we put
Y =yw 7’11(1'7 Y, ’U)) + zw 7]12(1'7 Y, ’U)) + (:L'yQ - 22) 772(% Y, Z)

we have fio = & and f3p = £3. Therefore, we conclude that the homomorphism
Oy(F = D)x, — [«(Ox(f*F — D)), is surjective. O

We apply Lemma 3.1 to F' = [(n— 5)H], the line bundle determined by the divisor
(n —5)H. Then, by (3.4) we have

( 5)  x(X,O0x(f*[(n—5)H] - D)) ~ x(X, Oy ([(n — 5)H] — D)%)
y (32),

(X, 0y (((n=5)H] - D)x) = x(¥,Oy(((n—5)H] - D)) B

56 —x(Y, Oy ([(n — 5)H] - X))
XY, Or([(n~5)H] = D) — x(¥, Oy (C5)H))
XY, 0x([(n—5)H] - D))~ 1 (¥ = P(C))

Here the second equality follows from the fact that X is linearly equivalent to nH
and the third one from the fact [(=5)H] = [Ky], the canonical divisor class of Y. By
(3.3),

X(Y,0y([(n=5)H|-D) = x(¥.O0y([(n—5)H])) = x(D,Oy([(n - 5)H])5))

(3.7) .

24
where Op(n — 5) denotes Op ®p, Oy ([(n — 5)H]). Consequently, by (3.1), (2.1),
(3.5), (3.6) and (3.7), we have the following:

(n—4)(n = 3)(n—2)(n 1) = x(D, O5(n - 5))

Theorem 3.2. —
fX C1C2 = —24X(X, Kx)
= —24x(Y,0y([(n—5)H] = D)) + 24
= —(n=4)(n-3)(n—-2)(n 1)+24x(D Op(n—5)) +24.

Note that, for a given D, x(D,Ox(n — 5)) can be calculated by computing the
Hilbert polynomial of the module Oz(n — 5) on P*(C).
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4. An application

The Todd class td(X) and the Chern character ch(Tx) of the tangent bundle Tx
of X are given by

1 1 1
td(X) = 14 —c1+ —(c +c2)+ —cica,
2 1 12 124
ch(Tx) = 3+ac+ 5(0? —2c2) + E(C‘f —3c1c2 + 3c3).

By the Riemann-Roch theorem,
X(X,7Tx) = / ch(Tx) - td(X).
X

Therefore, by Theorem 1.15, Theorem 2.1 and Theorem 3.2, we have a numerical for-
mula which gives the Euler-Poincaré characteristic x (X, Tx ) = X3_,(—1)*dim H* (X, Tx)
with coeflicients in the sheaf 7x = Ox (Tx) of holomorphic vector fields on X.

Theorem 4.1. —

1 ) 19 1
X. T - 3 =+
X(X, Tx) 2/01 24/0102+2/03

n n n n

= —5(4> - 5<3> - 20(2> + 15(1>
+(4n? — 30n — 2m + 85)m — 2(2n — 15)t + (4n — 15)y
—H#YT + AH#YG — %deg kz — 19x(D, O5(n — 5)).
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