桝の構造計算

桝と言っても、ボックスカルバートを縦にした接合桝です。樋函や管渠が2方向~3方向に取り付いて 〈る形状で、桝の下の方に穴が開〈場合、上の部分は壁に穴もな〈ボックスを縦置きにした形状です。 今までは任意形の平面解析プログラムを使用していました。エクセルだけで出来る方法はないものかと 考えていたのですが、ふとした機会から「土木工学ポケットブック」: オーム社の本を見ているときに、この 計算式を見つけて計算してみると、任意形平面解析で計算した結果と同じ値になり、それを使用したソフトの案を練っていました。それが今回やっと出来上がりましたので公開しました。

1. プログラムの内容

- 1) 桝形状で、底版頂版と応力の伝達がないボックス形状の構造計算。
- 2) ボックスを縦に立てた形状で、1連の構造物。
- 3) 荷重は、4辺水平方向全て等分布荷重で、4辺とも同じ荷重です。

2.設計の概略的な条件

- 1) 常時にて、土圧、水圧、活荷重ありです。
- 2) 土圧は静止土圧係数を使用。
- 3) 単位はSI単位を使用。
- 4) 準拠示方書は「土木工学ポケットブック」:オーム社。

3.設計計算書の内容

桝の構造計算書は以下の項目順序となっています。

- 1) 設計条件
- 2) 部材の断面性能
- 3) 荷重の算出
- 4) 断面力
- 5) 応力度計算
- 6) 配筋要領図(CADにて別途作成)

4.作業手順

- 1) シート「データ入力」にて、設計条件、構造物形状等データの入力。
- 2) 鉄筋については、シート「断面計算」にて、鉄筋径、配筋ピッチのデータ入力。
- 3) 形状寸法図、軸組図、荷重図、配筋要領図をCADにて別途作図し、シート「計算書」に貼付。
- 4) シート「計算書作成」を印刷。

5. デ - タの入力方法

この桝構造計算のプログラムで入力するデータは以下の通りです。

なお、着色部の数値は、手で入力します。

(シート「データ入力」)

- 1) 計算書のタイトル。
- 2) 桝の構造寸法、水位条件。
- 3) 単体積重量、活荷重等設計の条件。
- 4) コンクリート、鉄筋の許容値等、また鉄筋の被り。
- (シート「断面計算」)
- 5) 鉄筋径、配筋ピッチを、鉄筋材料の許容値内に収まるよう入力。

6.CADによる作図

プログラムに添付してある、形状寸法図、軸組図、荷重図、配筋要領図はプログラムとリンクしていません。別途CADにて作図し、シート「計算書作成」に貼付して下さい。

プログラムに添付してある図のCADデーターを、プログラムと同じフォルダーに入れています。添付したCADは以下のもので、元のCADは「(株)ビッグバン BV-CAD」を使用して作成しました。

· B V - C A D (ver. 6)

(株)ビッグバン

· A u t o C A D 2 0 0 0

Auto CAD. CC

· JW CAD

·SXFファイル(SFC)

7.シート「計算書作成」の説明

計算書の印刷枠は、表示メニュー「改ページプレビュー」にて表示できます。 印刷枠より外に以下のコメントがあります。 参考にして下さい。

入力データより : 入力したデータを読み取ります。

先計算結果より 計算書内で計算された値を読み取ります。

8.計算書枚数

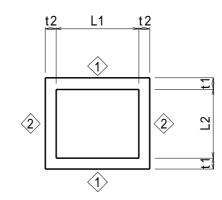
8枚(目次1枚込み)

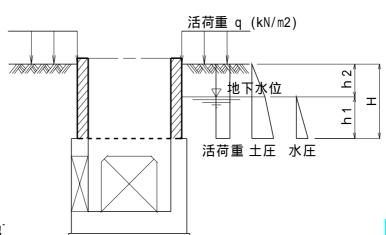
- 9. その他プログラムの使用法について
 - ・画面上で "シート「データ入力」)" と "シート「断面計算」"をExcelの画面上に並べてデータ の入力をすると、計算結果を見て入力値を変えながら検討が出来ます。

画面上での並べ方は、メニューの「ウィンドウ」「新しいウィンドウを開く」で同じデータが開きますから、その後、メニューの「ウィンドウ」「整列」「並べて表示」とします。それからその2画面別々に"シート「データ入力」)"と"シート「断面計算(入力と印刷)」"を開きます。

10.印刷方法について

・ 印刷の際、計算書の順番は、別フォルダー「計算書のPDF & DW」の中に、以下の2つのファイルが入っていますので、参考にしてください。


PDFファイル


使用説明、データ入力、断面計算、計算書作成の全てのシートが順番に入っています。 DWファイル

DocuWorks ファイルです。計算書作成と断面計算を、提出できる形に順番に並べています、成果品提出の際は参考にしてください。

データ入力表

報告書タイトル		桝上部の構造計算		
桝寸法	内形寸法	幅 部材<1>	L1 =	3.000 m
		幅 部材<2>	L2 =	2.500 m
	部材厚	部材<1>	t1 =	0.400 m
		部材<2>	t2 =	0.400 m
	検討位置	(ボックス下端位置) 桝の深さ	H =	2.700 m
	構造計算時の	奥行き長	B =	1.000 m

水位条件	(GL.	~	地
------	------	---	---

(地下水位~ボックス下端位置)

設計条件 単位体積重量 土(湿潤) 18.0 kN/m3 s =

> 10.0 kN/m3 (水中) 10.0 kN/m3 水 W =

1.200 m

1.500 m

h1=

sw =

静止土圧係数 0.50 Ka =

活荷重 10.0 kN/m2 自動車荷重 or 群集荷重 q =

鉄筋構造 コンクリート基準強度 ck = 24.0 N/mm2

> コンクリート許容曲げ圧縮応力度 8.0 N/mm2 ta =

> 160 N/mm2 鉄筋許容引張応力度 sa =

> 0.39 N/mm2 許容セン断応力度 a = 許容セン断応力度 (隅角部) 0.39 N/mm2 の割り増し係数 a =

> > (1 2)

断面計算 断面計算の部材有効幅 鉄筋被り 縦壁

b =	100	cm
d =	12	cm

データの入力をするんやで。

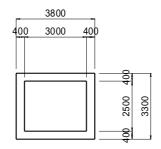
網掛けは修正したらあかんで。

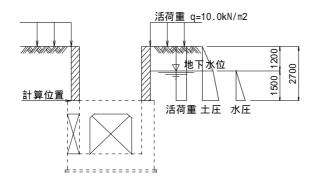
桝上部の構造計算

1.設計条件	-	-	-	-	-	-	-	-	
2.形状寸法図	-	-	-	-	-	-	-	-	
3.部材断面性能	-	-	-	-	-	-	-	-	
4.軸組図	-	-	-	-	-	-	-	-	
5.荷重の計算	-	-	-	-	-	-	-	-	
6.荷重図	-	-	-	-	-	-	-	-	
7.断面力	-	-	-	-	-	-	-	-	
8.部材力図	-	-	-	-	-	-	-	-	
9.応力度の計算	-	-	-	-	-	-	-	-	
10.配筋要領図	_	_	_	_	_	_	_	_	

桝上部の構造計算

1.設計条件

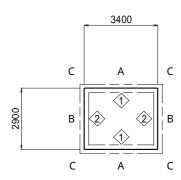

1)材料の単位体積重量


1 / 103 1 1 22 — 12 17 17 18 = = =					
	土	(湿潤)	s	=	18.0 kN/m^3
		(水中)	sw	=	10.0 kN/m^3
	水		w	=	10.0 kN/m^3
2)水位	集水桝外水化	位(桝下端~地下水位)	h2	=	1.500 m
3) 土圧係数	静止土圧係数	数	К	=	0.50
4)活荷重	集水桝周囲	活荷重	q	=	10.0 kN/m ²
5)鉄筋の被り	縦壁		d	=	12.0 cm
6) コンクリート設計基準強	強度		ck	=	24.0 N/mm ²
7)許容応力度					
	圧縮		ca	=	18.0 N/mm ²
	引張り		sa	=	160 N/mm ²
	剪断		а	=	0.39 N/mm ²

準拠示方書及び参考文献

- 1) 「道路土工カルバート工指針」(平成11年3月): 社団法人 日本道路協会
- 2) 「設計便覧(案)第1~3編」(平成14年4月):国土交通省近畿地方整備局
- 3) 「土木構造物設計マニュアル(案)」(平成11年11月):建設省土木研究所
- 4) 「土木工学ポケットブック」:オーム社

2.形状寸法図



3.部材断面性能

a . 断面性能

 $I = 1 / 12 * b * h^3$

4.軸組図

部材番号

部材長

5.荷重の計算

(1) 土圧

・ 上部壁下端位置における土圧強度

Ka : 静止土圧係数0.50h2 : GL.~ 地下水位1.200 mh1 : 地下水位~ボックス下端位置1.500 mB : 構造計算時の奥行き長1.000 m

$$p1 = (18.0 * 0.50 * 1.200 + 10.000 * 0.500 * 1.500) * 1.000 = 18.300 kN/m2$$

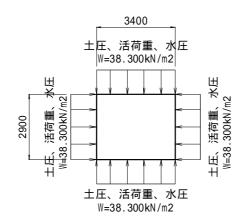
(2) 活荷重

上部壁下端位置における活荷重強度

$$p2 = 10.0 * 0.50 * 1.000 = 5.000 \text{ kN/m}^2$$

(3) 水圧

・上部壁下端位置における水圧強度


$$p3 = 10.0 * 1.50 * 1.000 = 15.000 kN/m2$$

(4) 外部水平荷重の集計

以上より、桝下端位置における水平荷重は以下のようになる。

$$W = 18.300 + 5.000 + 15.000$$
 = 38.300 kN/m²

6.荷重図


```
7.断面力
```

k = I 2 / I 1 * L 2 / L 1 = 0.00533 / 0.00533 * 2.900 / 3.400 = 0.853

・モーメント

隅角部(C)モーメント

Mc = - w / 12 * ($L1 ^2 + L2 ^2 * k$) / (1 + k) = -38.300 * 1 / 12 * ####### + 2.900 $^2 * 0.853$) / (1 + 0.853) = -32.268 kN·m

部材<1>

中央(A)モーメント

Ma = $W * L 1^2 / 8 + Mc$ = $38.300 * 3.400^2 * 1 / 8 + -32.268$

= 23.076 kN·m

部材<2>

中央(B)モーメント

Mb = $W * L 2^2 / 8 + Mc$ = $38.300 * 2.900^2 * 1 / 8 + -32.268$

= 7.995 k**N**• m

セン断力

部材<1>

S1 = 1 / 2 * w * L1 = 1 / 2 * 38.300 * 3.400

= 65.110 kN

部材<2>

S2 = 1 / 2 * w * L 2 = 1 / 2 * 38.300 * 2.900

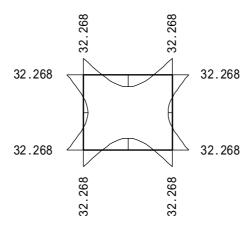
= 55.535 kN

· 軸力

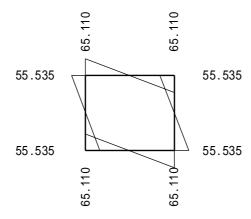
部材<1>

N1 = 1 / 2 * w * L 2 = 1 / 2 * 38.300 * 2.900

= 55.535 kN

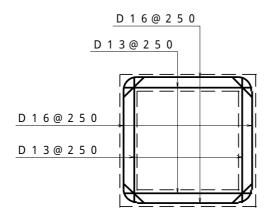

部材<2>

N2 = 1 / 2 * w * L 1 = 1 / 2 * 38.300 * 3.400


= 65.110 kN

8.部材力図

モーメント図


セン断力図

9.応力度の計算

	項	₹075		E	1	計 算 式	単 位	部材<1> 隅角部	部材<2> 隅角部	部材<1> 中央部	部材<2> 中央部
設	曲	げも	<u> </u>	Х	ント	M	kN• m	32.268	32.268	23.076	7.995
計断面	t	Ь		断	力	S	kN	65.110	55.535		
力	軸				力	N	kN	55.535	65.110	55.535	65.110
	有		効		幅	b	mm	1000	1000	1000	1000
断面	高				ż	h	mm	400	400	400	400
面諸元	か		ιζί		IJ	d	mm	120	120	120	120
	有	効		高	ż	d=h-d'	mm	280	280	280	280
	必	要	鉄	筋	量	(A _S)	mm2	534	491	299	-120
	配	筋		間	隔			D16@250	D16@250	D13@250	D13@250
応力度	鉄		筋		量	A _S	mm2	794	794	507	507
度計算	鉄	筋		周	長	U	mm	200	200	160	160
31	偏		心		量	e = M/N	mm	581	496	416	123
	中	立軸	1 0	つ 位	置	X	mm	86	90	79	238
Ę.			С	;			N/mm ²	3.4	3.3	2.8	0.6
応力度	S						N/mm ²	116	104	105	1
1/2			С	;		S/(b*d)	N/mm ²	0.23	0.20		
許容	曲	げ圧	縮	応ナ	〕度	ca	N/mm ²	8.0	8.0	8.0	8.0
許容応力	鉄	筋引	張	応ナ	〕度	sa	N/mm ²	160	160	160	160
度	t	ん圏	ī Jā	った	度	ca	N/mm ²	0.39	0.39	0.39	0.39

10.配筋要領図

·鉄筋被りは、 120 mm。

·部材<1>外側の鉄筋径に D16 ピッチは 250 mm。

·部材<1>内側の鉄筋径に D13 ピッチは 250 mm。

·部材<2>外側の鉄筋径に D16 ピッチは 250 mm。

·部材<2>内側の鉄筋径に D13 ピッチは 250 mm。