Publication List

I. Preprints

  1. K. Kikuchi, "Analysis of laser-amplifier noise: A review of the method and its application to optical communications," TechRxiv Preprint, DOI: 10.36227/techrxiv.23290742.v1, 2023.
  2. K. Kikuchi, "Reduction of nonlinear impairments in optical transmission systems for high-order quadrature-amplitude-modulation signals by using phase-conjugated twin waves," TechRxiv Preprint, DOI: 10.36227/techrxiv.21904098.v1, 2023.
  3. K. Kikuchi, ''Mitigation of nonlinear waveform distortion in high-order QAM optical transmission systems by two-mode phase-sensitive optical parametric amplifiers," TechRxiv Preprint, DOI: 10.36227/techrxiv.21196786.v1, 2022.
  4. K. Kikuchi, ''Theory of noise in optical transmission systems repeated by two-mode phase-sensitive optical parametric amplifiers,'' TechRxiv Preprint, DOI: 10.36227/techrxiv.18841817.v1, 2022.
  5. K. Kikuchi, ''Theory of spontaneous emission factor and noise figure of optical parametric amplifiers,'' TechRxiv Preprint, DOI: 10.36227/techrxiv.18489533.v1, 2022.

II. Journal Papers (in English)

  1. K. Kikuchi, "Sensitivity analysis of optically preamplified Stokes-vector receivers using analytically derived formulae for bit-error rate," Optics Express, vol.28, no.18, pp.26007-26017, Aug. 2020, DOI: 10.1364/OE.399814.
  2. K. Kikuchi, "Quantum theory of noise in Stokes vector receivers and application to bit error rate analysis," J. Lightwave Technol., vol. 38, no. 12, pp. 3164-3172, June 2020, DOI: 10.1109/JLT.2020.2967420.
  3. S. Ghosh, T. Tanemura, Y. Kawabata, K. Katoh, K. Kikuchi, and Y. Nakano, "Decoding of multilevel Stokes-vector modulated signal by polarization-analyzing circuit on InP,'' J. Lightwave Technol., vol.36, no.2, pp.187-194, Jan. 2018.
  4. K. Kikuchi, "Fundamentals of coherent optical fiber communications (Tutorial review)," J. Lightwave Technol., vol.34, no.1, pp.157-179, Jan. 2016, DOI: 10.1109/JLT.2015.2463719.
  5. S. Ishimura and K. Kikuchi, "Multi-dimensional permutation-modulation format for coherent optical communications,'' Optics Express, vol.23, no.12, pp.15587-15597, June 2015.
  6. S. Ishimura and K. Kikuchi, "Eight-state trellis-coded optical modulation with signal constellation of four-dimensional M-ary quadrature-amplitude modulation," Optics Express vol. 23, no. 5, pp. 6692–6704, Feb. 2015.
  7. K. Kikuchi and S. Kawakami, "Multi-level signaling in the Stokes space and its application to large-capacity optical communications," Optics Express, vol.22. no.7, pp.7374-7387, April 2014.
  8. Md. S. Faruk, Y. Mori, and K. Kikuchi, "In-band estimation of optical signal-to-noise ratio from equalized signals in digital coherent receivers," IEEE Photonics J., vol.6, no.1, 7800109, Feb., 2014
  9. K. Kikuchi, "Electronic polarization-division demultiplexing based on digital signal processing in intensity-modulation direct-detection optical communication systems," Optics Express vol. 22, no. 2, pp. 1971–1980, Jan. 2014
  10. Md. S. Faruk and K. Kikuchi, “Compensation for in-phase/quadrature imbalance in coherent-receiver front end for optical quadrature amplitude modulation,” IEEE Photonics J., vol.5, no.2, 7800110, April, 2013
  11. Y. Mori, C. Zhang, and K. Kikuchi, "Novel configuration of finite-impulse-response filters tolerant to carrier-phase fluctuations in digital coherent optical receivers for higher-order quadrature amplitude modulation signals," Optics Express, vol.20, no.24, pp.26236-26251, Nov. 2012
  12. K. Kikuchi , "Characterization of semiconductor-laser phase noise and estimation of bit-error rate performance with low-speed offline digital coherent receivers,'' Optics Express, vol.20, no.5, pp.5291-5302, Feb. 2012
  13. K. Kikuchi and M. Osaki, "Highly-sensitive coherent optical detection of M-ary frequency-shift keying signal," Optics Express, vol.19, no.16, pp.B32-B39, Dec. 2011
  14. K. Kikuchi, “Digital coherent optical communication systems: Fundamentals and future prospects,” IEICE Electronics Express, vol.8, no.20, pp.1642-1662, Oct. 2011
  15. K. Kikuchi, “Analyses of wavelength- and polarization-division multiplexed transmission characteristics of optical quadrature-amplitude- modulation signals,”Optics Express, vol.19, no.19, pp.17985-17995, Sept. 2011
  16. Md. S. Faruk and K. Kikuchi, “Adaptive frequency-domain equalization in digital coherent receivers,” Optics Express, vol.19, no.13, pp.12789-12798, June 2011
  17. K. Kikuchi, “Performance analyses of polarization demultiplexing based on constant-modulus algorithm in digital coherent optical receivers,” Optics Expressvol.19, no.10, pp. 9868–9880, May 2011
  18. K. Kikuchi, “Clock recovering characteristics of adaptive finite-impulse-response filters in digital coherent optical receivers,” Optics Express, vol.19, no.6, pp.5611–5619, March 2011
  19. Md. S. Faruk, Y. Mori, C. Zhang, K. Igarashi, and K. Kikuchi, “Multi-impairment monitoring from adaptive finite-impulse-response filters in a digital coherent receiver,” Optics Express, vol.18, no.26, pp.26929–26936, Dec. 2010
  20. H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, “Wavelength-multiplexed entanglement distribution,” Optical Fiber Technology, vol.16, no.4, pp. 225-235, August 2010
  21. K. Kikuchi, “Ultra long-haul optical transmission characteristics of wavelength-division multiplexed dual-polarisation 16-quadrature-amplitude-modulation signals,” Electron. Lett., vol.46, no.6, pp.433-434, March 2010
  22. Md. Khairuzzaman, C. Zhang, K. Igarashi, K. Katoh, and K. Kikuchi, “Equalization of nonlinear transmission impairments by maximum-likelihood-sequence estimation in digital coherent receivers,” Optics Express, vol.18, no.5, pp.4776-4782, March 2010
  23. C. Zhang, Y. Mori, K. Igarashi, K. Katoh, and K. Kikuchi, “Ultrafast operation of digital coherent receivers using their time-division demultiplexing function,”IEEE Journal of Lightwave Technology, vol. 27, no. 3, pp.224-232, Feb. 2009
  24. Y. Mori, C. Zhang, K. Igarashi, K. Katoh, and K. Kikuchi, “Unrepeated 200-km transmission of 40-Gbit/s 16-QAM signals using digital coherent receiver,”Optics Express, vol. 17, no. 32, pp.1435-1441, Feb. 2009
  25. H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, “Wavelength-multiplexed distribution of highly entangled photon-pairs over optical fiber,” Optics Express, vol.16, no.26, pp.22099-22104, Dec. 2008
  26. H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, “Broadband source of telecom-band polarization-entangled photon-pairs for wavelength-multiplexed entanglement distribution,” Optics Express, vol.16, no.20, pp.16052-16057, Sept. 2008
  27. H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, “Distribution of polarization-entangled photon-pairs produced via spontaneous parametric down-conversion within a local-area fiber network: Theoretical model and experiment,” Optics Express, vol.16, no.19, pp.14512-14523, Sept. 2008
  28. H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, “Stable source of high quality telecom-band polarization-entangled photon-pairs based on a single, pulse-pumped, short PPLN waveguide,” Optics Express, vol.16, no.17, pp.12460-12468, Aug. 2008
  29. K. Igarashi and K. Kikuchi, “Optical signal processing by phase modulation and subsequent spectral filtering aiming at applications to ultrafast optical communication systems,” IEEE J. Sel. Topics Quantum Electron., vol.14, no.3, pp.551-565, May/June 2008
  30. K. Kikuchi and S. Tsukamoto, “Evaluation of sensitivity of the digital coherent receiver,” J. Lightwave. Technol., vol. 26, no. 13, pp.1817-1822, July 2008
  31. K. Kikuchi, “Electronic post-compensation for nonlinear phase fluctuations in a 1000-km 20-Gbit/s optical quadrature phase-shift keying transmission system using the digital coherent receiver,” Optics Express, vol.16, no.2, pp.889-896, Jan. 2008
  32. Pasu Kaewplung and K. Kikuchi, “Simultaneous cancellation of fiber loss, dispersion, and Kerr effect in ultralong-haul optical fiber transmission by midway optical phase conjugation incorporated with distributed Raman amplification,” J. Lightwave Technol., vol.25, no.10, pp.3035-3050, Nov. 2007
  33. Budiman Dabarsyah, Chee Seong Goh, Sunil K. Khijwania, S. Y. Set, K. Katoh, and K. Kikuchi, “Adjustable group velocity dispersion and dispersion slope compensation devices with wavelength tunability based on enhanced thermal chirping of fiber Bragg gratings,” J. of Lightwave Technol., vol. 25, no. 9, pp. 2711-2718, Sept. 2007
  34. K. Igarashi, K. Katoh, and K. Kikuchi, “Optoelectronic time-division demultiplexing of 160-Gbit/s optical signal based on phase modulation and spectral filtering,” Optics Express, vol.15, no.3, pp.845-851, Feb. 2007
  35. K. H. Fong, C. S. Goh, S. Y. Set, R. Grange, M. Haiml, A. Schlatter, U. Keller, and K.Kikuchi, “Solid-state Er:Yb:glass laser mode-locked by using single-wall carbon nanotube thin film,” Opt. Lett., vol.32, no.1, pp.38-40, Jan. 2007
  36. J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, Y. G. Han, S. B. Lee, and K. Kikuchi, “Output performance investigation of self-phase-modulation-based 2R regenerator using bismuth oxide nonlinear fiber,” IEEE Photonics Technol. Lett., vol.18, no.12, pp.1296-1298, June 2006
  37. T. Tanemura and K. Kikuchi, “Circular-birefringence fiber for nonlinear optical signal processing,” J. Lightwave Technol., vol.24, no.11, pp.4108-4119, Nov. 2006
  38. K. Kikuchi, “Phase-diversity homodyne detection of multi-level optical modulation with digital carrier phase estimation,” IEEE J. Selected Topics on Quantum. Electron., vol.12, no.4, pp.563-570, July/Aug. 2006
  39. S. Tsukamoto, K. Katoh, and K. Kikuchi, “Coherent demodulation of optical multilevel phase shift-keying signals using homodyne detection and digital signal processing,” IEEE Photon. Technol. Lett., vol.18, no.10, pp.1131-1133, May 2006
  40. S. Tsukamoto, K. Katoh, and K. Kikuchi, “Unrepeated transmission of 20-Gbit/s optical quadrature phase-shift keying signal over 200-km standard single-mode fiber based on digital processing of homodyne-detected signal for group-velocity dispersion compensation,” IEEE Photon. Tech- nol. Lett., vol.18, no.9, pp.1016-1018, May 2006
  41. K. Igarashi, K. Katoh, and K. Kikuchi, “Prescaled phase-locked loop using phase modulation and spectral filtering and its application to clock extraction from 160-Gbit/s optical-time-division multiplexed signal,” Optics Express, vol.14, no.9, pp.4087-4091, May 2006
  42. J. H. Lee, C. H. Kim, Y.-G. Han,.S.B. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Bismuth nonlinear fibre-based optical phase conjugator without SBS-induced effciency limitation and its application to dispersion compensation in transmission link,” Electron. Lett., vol.42, no.5, pp.298-299, March 2006
  43. T. Tanemura and K. Kikuchi, “Observation of elliptical polarization rotation in a long twisted fiber,” Opt. Lett., vol.14, no.4, pp. 1408-1412, Feb. 2006
  44. T. Tanemura, J. H. Lee, D. Wang, K. Katoh, and K. Kikuchi, “Polarization-insensitive 160-Gb/s wavelength converter with all-optical repolarizing function using circular-birefringence highly nonlinear fiber,” Opt. Express, vol.14, no.4, pp. 1408-1412, Feb. 2006
  45. J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Wideband tunable wavelength conversion of 10-Gb/s nonreturn-to-zero signal using cross-phase-modulation-induced polarization rotation in 1-m Bismuth Oxide-based nonlinear optical fiber,” IEEE Photonics Technol. Lett., vol.18, no.1, pp. 298- 300, Jan. 2006
  46. D.-S. Ly-Gagnon, S. Tsukamoto, K. Katoh, and K. Kikuchi, “Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation,”J. of Lightwave Technol., vol.24, no.1, pp.12- 21, Jan. 2006
  47. J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Bismuth-Oxide-based nonlinear fiber with a high SBS threshold and its application to four-wave-mixing wavelength conversion using a pure continuous-wave pump,”J of Lightwave Technol., vol.24, no.1, pp. 22- 28, Jan 2006
  48. J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Clock recovery and demultiplexing of high-speed OTDM signal through combined use of bismuth oxide nonlinear fiber and erbium-doped bismuth oxide fiber,” IEEE Photonics Technol. Lett., vol.17, no.12, pp.2658- 2660, Dec. 2005
  49. J.H. Lee, T. Tanemura, Y. Takushima, and K. Kikuchi, “All-optical 80-Gb/s add-drop multiplexer using fiber-based nonlinear optical loop mirror,” IEEE Photonics Technol. Lett., vol.17, no.4, pp.840-842, April 2005
  50. J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Bismuth oxide nonlinear fibre-based 80 Gbit/s wavelength conversion and demultiplexing using cross-phase modulation and filtering scheme,” Electron. Lett., vol. 41, no.22, pp. 1237-1238, Oct. 2005
  51. J. H. Lee, Y. Takushima, and K. Kikuchi, “Continuous-wave supercontinuum laser based on erbium-doped fiber ring cavity incorporating a highly nonlinear optical fiber,” Opt. Lett., vol.30, no.19, pp.2599-2601, Oct. 2005
  52. J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “40 Gbit/s XOR and AND gates using polarisation switching within 1 m-long bismuth oxide-based nonlinear fibre,” Electron. Lett., vol.41, no.19, pp. 1074- 1075, Sept. 2005
  53. T. Tanemura, K. Katoh, and K. Kikuchi, “Polarization-insensitive asymmetric four-wave mixing using circularly polarized pumps in a twisted fiber,” Opt. Express, vol.13, no.19, pp.7497-7505, Sept. 2005
  54. J. H. Lee, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, “All fiber-based 160-Gbit/s add/drop multiplexer incorporating a 1-m-long Bismuth Oxide-based ultra-high nonlinearity fiber,” Opt. Express, vol.13, no.18, pp.6864-6869, Sept. 2005
  55. J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Wavelength conversion of 160 Gbit/s OTDM signal using bismuth oxide-based ultra-high nonlinearity fibre,” Electron. Lett., vol.41, no.16, pp.49-50, August 2005
  56. J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Four-wave- mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber,” IEEE Photonics Technol. Lett., vol.17, no.7, pp. 1474- 1476, July 2005
  57. J. H. Lee, T. Tanemura, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, “Experimental comparison of a Kerr nonlinearity figure of merit including the stimulated Brillouin scattering threshold for state-of-the-art nonlinear optical fibers,” Opt. Lett., vol.30, no.13, pp. 1698-1700, July 2005
  58. J. H. Lee and K. Kikuchi, “Experimental performance comparison for various continuous-wave supercontinuum schemes: ring cavity and single pass,” Opt. Express, vol.13, no.13, pp.4848-4853, June 2005
  59. J. H. Lee, T. Tanemura, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, “Use of 1-m Bi2O3 nonlinear fiber for 160-Gbit/s optical time-division demultiplexing based on polarization rotation and a wavelength shift induced by cross-phase modulation,” Opt. Lett., vol.30, no.11, pp.1267-1269, June 2005
  60. T. Sakamoto and K. Kikuchi, “160-Gb/s operation of nonlinear optical loop-mirror with an optical bias controller,” IEEE Photonics Technol. Lett., vol.17, no.5, pp.1058-1060, May 2005
  61. T. Tanemura, J. Suzuki, K. Katoh, and K. Kikuchi, “Polarization-insensitive all-optical wavelength conversion using cross-phase modulation in twisted fiber and optical filtering,” IEEE Photonics Technol. Lett., vol.17, no.5, pp.1052-1054, May 2005
  62. Y. Ozeki, Y. Takushima, K. Aiso, and K. Kikuchi, “High repetition-rate similariton generation in normal dispersion Erbium-doped fiber amplifiers and its application to multi-wavelength light sources,” IEICE Trans. Electron., vol.E88-C, no.5, pp.904-911, May 2005
  63. J. H. Lee, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, “All-fiber 80- Gbit/s wavelength converter using 1-m-long Bismuth Oxide-based nonlinear optical fiber with a nonlinearity g of 1100 W1km1,” Opt. Express, vol.13, no.8, pp. 3144-3149, April 2005
  64. D.-S. Ly-Gagnon, K.Katoh, and K. Kikuchi, “Unrepeated transmission of 20-Gbit/s quadrature phase-shift keying signals over 210 km using a homodyne phase-diversity receiver and digital signal processing,” Electron. Lett., vol.41, no.4, pp.59-60, 2005
  65. C.S.Goh, S.Y.Set, and K. Kikuchi, “Spectrum tuning of fiber Bragg grating by strain distributions and its applications,” IEICE Trans. Electron., vol.E88-C, no.3, pp.363-371, 2005
  66. J.Suzuki, T.Tanemura, K.Taira, Y.Ozeki, and K.Kikuchi, “All-optical regenerator using wavelength shift induced by cross-phase modulation in highly nonlinear dispersion-shifted fiber,” IEEE Photonics Technol. Lett., vol.17, no.2, pp.423-425, 2005
  67. Y.Ozeki, Y.Takushima, H.Yoshimi, K.Kikuchi, H.Yamauchi, and H.Taga, “Complete charac- terization of picosecond optical pulses in long-haul dispersion-managed transmission systems,” IEEE Photonics Technol. Lett., vol.17, no.3, pp.648-650, 2005
  68. Y. Takushima, K. Yasunaka, Y. Ozeki, and K. Kikuchi, “87 nm bandwidth noise-like pulse generation from erbium-doped fibre laser,” Electron. Lett.,vol.41, no.7, pp.399-400, 31 March 2005
  69. Y. Ozeki, Y.Takushima, K.Aiso, K.Taira, and K.Kikuchi, “Generation of 10 GHz similariton pulse trains from 1.2 km-long erbium-doped fibre amplifier for application to multi-wavelength pulse source,” Electron. Lett., vol.40, no.18, pp.1103-1104, 2004
  70. T.Tanemura, Y.Ozeki, and K. Kikuchi, “Modulation instability and parametric amplification induced by loss dispersion in optical fibers,” Phys. Rev. Lett., vol.93, no.16, pp.163902-1-163902-4, 2004
  71. J. Suzuki, K. Taira, Y. Fukuchi, Y. Ozeki, T. Tanemura, and K. Kikuchi, “All-optical time-division add-drop multiplexer using optical fibre Kerr shutter,”Electron. Lett., vol.40, no.7, pp.445-446, April 2004
  72. T. Sakamoto, A. Okada, O. Moriwaki, M. Matsuoka, and K. Kikuchi, “Performance analysis of variable optical delay circuit using highly nonlinear fiber parametric wavelength converters,” J. Lightwave Technol., vol.22, no.3, pp.874-881, March 2004
  73. T. Tanemura, C. S. Goh, K. Kikuchi, and S. Y. Set, “Highly effcient arbitrary wavelength conversion within entire C-band based on nondegenerate fiber four-wave mixing,” IEEE Photonics Technol. Lett., vol.16, no.2, pp.551-553, Feb. 2004
  74. C. S. Goh, S. Y. Set, and K. Kikuchi, “Design and fabrication of a Tunable dispersion-slope compensating module based on strain-chirped fiber Bragg gratings,” IEEE Photonics Technol. Lett., vol.16, no.2, 524-526, Feb. 2004
  75. T. Sakamoto and K. Kikuchi, “Nonlinear optical loop mirror with an optical bias controller for achieving full-swing operation of gate switching,” IEEE Photonics Technol. Lett., vol.16, no.2, 545-547, Feb. 2004
  76. T. Sakamoto, K. Seo, K. Taira, N. S. Moon, and K. Kikuchi, “Polarization-insensitive all-optical time-division demultiplexing using a fiber four-wave mixer with a peak-holding optical phase-locked loop,” IEEE Photonics Technol. Lett.,vol.16, no.2, 563-565, Feb. 2004
  77. S.Y. Set, M. Jablonski, K. Hsu, C. S. Goh, and K. Kikuchi, “Rapid amplitude and group-delay measurement system based on intra-cavity-modulated swept-lasers,” IEEE Transactions on Instrumentation and Measurement, vol.53, no.1, pp.192-196, Feb. 2004
  78. K. Taira and K. Kikuchi, “Picosecond pulse generation with a high extinction ratio employing an electroabsorption modulator, a fiber compressor, and a self-phase-modulation-based pulse reshaper,” Electron. Lett., vol.40, no.1, pp. 15-16, Jan. 2004
  79. Y. Takushima, H. Yoshimi, Y. Ozeki, K. Kikuchi, H. Yamauchi, and H. Taga, “In-service dispersion monitoring in 32x10.7Gbps WDM transmission system over trans-Atlantic distance using optical frequency-modulation method,” IEEE/OSA J. Lightwave Technol., vol.22, no.1, pp.257-265, Jan. 2004
  80. T. Tanemura and K. Kikuchi, “Unified analysis of modulational instability induced by cross-phase modulation in optical fibers,” J. Opt. Soc. Am. B, vol.20, no. 12, pp. 2502-2514, Dec.2003
  81. M. Jablonski, K. Sato, D. Tanaka, H. Yaguchi, S. Y. Set, K. Furuki, K. Yamada, B. Buchholtz, Y.Tanaka, and K. Kikuchi, “A compact thin-film-based all-pass device for the compensation of the in-band dispersion in FBG filters,” IEEE Photonics Technol. Lett., vol.15, no.12, pp.1725-1727, Dec. 2003
  82. T. Tanemura and K. Kikuchi, “Polarization- independent broad-band wavelength conversion using two-pump fiber optical parametric amplification without idler spectral broadening,” IEEE Photonics Technol. Lett., vol. 15, no. 11, pp.1573-1575, Nov. 2003
  83. S. K. Khijwania, C. S. Goh, S. Y .Set, and K. Kikuchi, “A novel tunable dispersion slope compensator based on nonlinearly thermally chirped fiber Bragg grating,” Optics Communications, vol.227, no.1-3, pp.107-113, Nov. 2003
  84. K. Taira and K. Kikuchi, “Sub-picosecond pulse generation using an electroabsorption modulator and a double-stage pulse compressor,” IEEE Photonics Technol. Lett., vol.15, no.9, pp.1288-1290, 2003
  85. M.R. Mokhtar, C.S. Goh, S.A. Butler, S.Y. Set, K. Kikuchi, D.J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett., vol.39, no.6, pp.509-511, March 2003
  86. Y. Takushima, H. Yoshimi, K. Kikuchi, H. Yamauchi, and H.Taga, “Experimental demonstration of in-service dispersion monitoring in 960-km WDM transmission system using optical frequency-modulation method,” IEEE Photonics Technol. Lett., vol.15, no.6, pp. 870 -872, June 2003
  87. P. Kaewplung, T. Angkaew, and K. Kikuchi, “Simultaneous suppression of third-order dispersion and sideband instability in single-channel optical fiber transmission by midway optical phase conjugation employing higher order dispersion management,” J. of Lightwave Technol., vol.21, no.6, pp.1465-1473, June 2003
  88. S.Y.Set, C.S. Goh, and K. Kikuchi, “Multi-gigahertz pulse train generation in a figure-8 laser incorporating a sampled fiber Bragg grating,” IEICE Trans. on Electron., vol.E86-C, no.5, pp.699-704, May 2003
  89. C.S. Goh, M.R. Mokhtar, S.A. Butler, S.Y. Set, K. Kikuchi, and M. Ibsen, “Wavelength tuning of fiber Bragg gratings over 90 nm using a simple tuning package,” IEEE Photonics Technol. Lett., vol.15, no.4, pp.557-559, April 2003
  90. Y. Fukuchi, T. Sakamoto, K. Taira, and K. Kikuchi, “All-optical time-division demultiplexing of 160 Gbit/s signal using cascaded second-order nonlinear effect in quasi-phase matched LiNbO3 waveguide device,” Electron. Lett., vol.39, no.10, pp. 789-790, 15 May 2003
  91. Budiman Dabarsyah, C. S. Goh, S. K. Khijwania, S. Y. Set, K. Katoh, and K. Kikuchi, “Ad justable dispersion compensation devices with wavelength tunability based on enhanced thermal chirping of fiber Bragg gratings,” IEEE Photonics Technol. Lett., vol.15, no.3, pp.416-418, 2003
  92. T. Sakamoto, A. Okada, O. Moriwaki, M. Matsuoka, and K. Kikuchi, “Variable optical delay circuit using highly nonlinear fibre parametric wavelength convertors,” Electron. Lett., 2003, vol.39, no.2, pp.198-200, Jan. 2003
  93. N.S. Moon and K. Kikuchi, “N×N multiwavelength cross connect based on tunable fiber Bragg gratings,” IEEE/OSA J. Lightwave Technol., vol.21, no.3, pp.703 -718, 2003
  94. P. Kaewplung, T. Angkaew, and K. Kikuchi, “Complete analysis sideband instability in chain of periodic dispersion-managed fiber link and its effect on higher order dispersion-managed long-haul wavelength-division multiplexed systems,” IEEE/OSA J. Lightwave Technol., vol.20, no.11, pp.1895-1907, 2002
  95. Y. Ozeki, K. Taira, K. Aiso, Y. Takushima, and K. Kikuchi, “Highly flat super-continuum generation from 2 ps pulses using 1 km-long erbium-doped fibre amplifier,” Electron. Lett., vol.38, no.25, pp.1642-1643, Dec. 2002
  96. T. Sakamoto, Han Chuen Lim, and K. Kikuchi, “All-optical polarization-insensitive time-division demultiplexer using a nonlinear optical loop mirror with a pair of short polarization-maintaining fibers,” IEEE Photonics Technol. Lett., vol.14, no.12, pp.1737-1739, 2002
  97. K. Taira, Y. Fukuchi, R. Ohta, K. Katoh, and K. Kikuchi, “Background-free intensity autocor- relator employing a Si avalanche photodiode as a two-photon absorber,” Electron. Lett., vol.38, no.23, pp. 1465-1466, Nov. 2002
  98. Y. Fukuchi and K. Kikuchi, “Novel design method for all-optical ultrafast gate switches using cascaded second-order nonlinear effect in quasi-phase matched LiNbO3 devices,” IEEE Photonics Technol. Lett., vol.14, no.10, pp.1409-1411, 2002
  99. Y. Fukuchi, T. Sakamoto, K. Taira, K. Kikuchi, D. Kunimatsu, A. Suzuki, and H. Ito, “Speed limit of all-optical gate switches using cascaded second-order nonlinear effect in quasi-phase-matched LiNbO3 devices,” IEEE Photonics Technol. Lett., vol.14, no.9, pp.1267-1269, 2002
  100. C.S. Goh, S.Y. Set, and K. Kikuchi, “Widely tunable optical filters based on fiber Bragg grat ings,” IEEE Photonics Technol. Lett., vol.14, no.9, pp.1306-1308, 2002
  101. T. Tanemura, Y. Takushima, and K. Kikuchi, “Narrowband optical filter, with variable transmission spectrum, using stimulated Brillouin scattering in optical fiber,” Opt. Lett., vol.27, no.17, pp.1552-1554, Sept. 2002
  102. K. Kikuchi and K. Katoh, “Differential detection of single modulation sideband for ultra-dense optical frequency-division multiplexed systems,” Electron. Lett., vol.38, no.17, pp.980-981, Aug.2002
  103. C.S. Goh, S.Y. Set, K. Taira, S.K. Khijwania, and K. Kikuchi, “Nonlinearly strain-chirped fiber Bragg grating with an adjustable dispersion slope,” IEEE Photonics Technol. Lett., vol.14, no.5, pp.663-665, 2002
  104. P. Kaewplung, T. Angkaew, and K. Kikuchi, “Feasibility of 100-Gb/s 10000-km single-channel optical transmission by midway optical phase conjugation incorporated with third-order dispersion compensation,” IEEE Photonics Technol. Lett., vo.13, no.4, pp.293-295, 2002
  105. K. Kikuchi and K. Katoh, “Optical heterodyne receiver for selecting densely frequency-division- multiplexed signals,” Electron. Lett., vol.38, no.6, pp.283-285, March 2002
  106. K. Kikuchi, K. Taira, and N. Sugimoto, “Highly-nonlinear Bismuth Oxide-based glass fibres for all-optical signal processing,” Electron. Lett. vol.38, no.4, pp.166-167, 2002
  107. Y. Takushima, T. Douke, X. Wang, and K. Kikuchi, “Dispersion tolerance and transmission distance of a 40-Gb/s dispersion management soliton transmission system,” IEEE/OSA J. Light- wave Technol., vol. 20, no. 3, March 2002
  108. M. Ibsen, S. Y. Set, C. S. Goh, and K. Kikuchi, “Broad-band continuously tunable all-fiber DFB lasers,” IEEE Photonics Technol. Lett., vol.14, no.1, pp.21-23, 2002
  109. N. S. Moon and K. Kikuchi, “N×N optical cross-connect based on tunable fibre Bragg gratings with high channel scalability,” Electron. Lett., vol.37, no.23, pp.1402-1404, 2001
  110. T. Tanemura, H. C. Lim, and K. Kikuchi, “Suppression of idler spectral broadening in highly effcient fiber four-wave-mixing by binary-phase-shift keying modulation of pump wave,” IEEE Photonics Technol. Lett., vol.13, no.12, pp.1328 -1330, 2001
  111. M. Jablonski, Y. Tanaka, H.Yaguchi, K.Furuki, K.Sato, N.Higashi and K.Kikuchi, “Entirely thin-film allpass coupled-cavity filters in a parallel configuration for adjustable dispersion-slope compensation,” IEEE Photonics Technol. Lett., vol.13, no.11, pp.1188 -1190, 2001
  112. Y. Takushima, T. Douke, and K. Kikuchi, “Influence of polarization-mode dispersion on soliton interaction in dispersion-managed soliton transmission systems,”Electron. Lett., vol.37, no.13, pp.849-850, 2001
  113. Y. Takushima and K. Kikuchi, “In-service monitor for group-velocity dispersion of optical fibre transmission systems,” Electron. Lett., vol.37, no.12, pp.743-745, 2001
  114. N. S. Moon, T. Sakamoto, Y. Takushima, and K. Kikuchi, “Experimental verification of Gaussian approximation model of multiple intraband crosstalk in wavelength-division multiplexed networks using recirculating fiber loop,” IEEE Photonics Technol. Lett., vol.13, no.9, pp.1038-1040, 2001
  115. T. Sakamoto and K. Kikuchi, “Analyses of all-optically regenerated transmission system using nonlinear interferometric switches,” IEEE Photonics Technol. Lett., vol.13, no.9, pp.1020-1022, 2001
  116. M. Jablonski, Y. Takushima, and K. Kikuchi, “The realization of all-pass filters for third-order dispersion compensation in ultrafast optical fiber transmission systems,” J. Lightwave Technol., vol.19, no.8, pp.1194-1205, 2001
  117. K. Taira and K. Kikuchi, “Optical sampling system at 1.55 µm for the measurement of pulse waveform and phase employing sonogram characterization,” IEEE Photonics Technol. Lett., vol.13, no.5, pp.505-507, 2001
  118. T. Sakamoto, F. Futami, K. Kikuchi, S. Takeda, Y. Sugaya, and S. Watanabe, “All-optical wavelength conversion of 500-fs pulse trains by using nonlinear-optical loop mirror composed of a highly nonlinear dispersion-shifted fiber,” IEEE Photonics Technol. Lett., vol.13, no.5, pp.502-504, 2001
  119. H.C. Lim and K. Kikuchi, “A filter-free scheme for orthogonally pumped polarization-insensitive optical phase conjugation of broad-band optical signals,” IEEE Photonics Technol. Lett., vol.13, no.5, pp.481-483, 2001
  120. K. Kikuchi and K. Taira, “Theory of sonogram characterization of optical pulses,” IEEE J.Quantum Electron., vol.37, no.4, pp.533-537, 2001
  121. P. Kaewplung, T. Angkaew, and K. Kikuchi, “Feasibility of 100-Gbit/s 10000-km single-channel optical transmission by midway optical phase conjugation incorporated with third-order dispersion compensation,” IEEE Photonics Technol. Lett., vol.13, no.4, pp.293-295, 2001
  122. K. Taira and K. Kikuchi, “Frequency-resolved optical cross-correlator for complete and rapid retrieval of waveform and phase of optical pulses at 1.55 µm,” Electron. Lett., vol.37, no.5, pp.311-312, 2001
  123. F. Futami and K. Kikuchi, “Low-noise multiwavelength pulse source using spectrum-sliced super-continuum generated from a normal group-velocity dispersion fiber,” IEEE Photonics Technology Lett., vol.13, no.1,pp.73-75, 2001
  124. Han Chuen Lim, T. Sakamoto, and K. Kikuchi, “Polarization-independent optical demultiplexing by conventional nonlinear optical loop mirror in a polarization-diversity loop configuration,” IEEE Photonics Technol. Lett. vol.12, no.12, pp.1704-1706, 2000
  125. D. Kunimatsu, C. Q. Xu, D. Pelusi, X. Wang, K. Kikuchi, H. Ito, and A. Suzuki, “Sub-picosecond pulse transmission over 144 km using midway optical phase conjugation via a cascaded second-order process in a LiNbO3 waveguide,” IEEE Photonics Technol. Lett., vol.12, no.12, pp.1621-1623, 2000
  126. K. Taira and K. Kikuchi, “Highly-sensitive frequency-resolved optical gating in the 1.55 µm region using an organic nonlinear optical crystal for second-harmonic generation,” Electron. Lett., vol.36, no.20, pp.1719-1720, 2000
  127. M. Pelusi, X. Wang, F. Futami, K. Kikuchi, and A. Suzuki, “Fourth-order dispersion compensation for 250-fs pulse transmission over 139-km optical fiber,”IEEE Photonics Technol. Lett., vol.12, no.7, pp.795-797, 2000
  128. M. Jablonski, Y. Takushima, K. Kikuchi, Y. Tanaka, K. Furuki, K. Sato, and N. Higashi, “Layered optical thin-film allpass dispersion equalizer (LOTADE) for compensation of the dispersion slope of optical fibers,” Electron. Lett., vol.36, no.13, pp.1139-1141, 2000
  129. M. Jablonski, Y. Takushima, K. Kikuchi, Y. Tanaka, and S. Higashi, “Adjustable coupled two-cavity allpass filter for dispersion slope compensation of optical fibres,” Electron. Lett., vol.36, no.6, pp.511-512, 2000
  130. F. Futami, K. Taira, K. Kikuchi, and A. Suzuki, “Wideband fibre dispersion equalisation up to fourth-order for long-distance sub-picosecond optical pulse transmission,” Electron. Lett., vol.35, no.25, pp.2221-2223, 1999
  131. Han Chuen Lim, F. Futami, K. Taira, and K. Kikuchi, “Broad-band mid-span spectral inversion without wavelength shift of 1.7-ps optical pulses using a highly nonlinear fiber Sagnac interferometer, IEEE Photonics Technol. Lett., vol.11, no.11, pp.1405-1407, 1999
  132. F. Futami, Y. Takushima, and K. Kikuchi, “Generation of wideband and flat supercontinuum over a 280-nm spectral range from a dispersion-flattened optical fiber with normal group-velocity dispersion,” IEICE Trans. on Electron., vol.E82-C, no.8, pp.1531–1538, 1999
  133. Xiaomin Wang, K. Kikuchi, and Y. Takushima, “Analysis of dispersion-managed optical fiber transmission system using non-return-to-zero pulse format and performance restriction from third-order dispersion,” IEICE Trans. on Electron., vol.E82-C, no.8, pp.1407–1413, 1999
  134. Fariborz Mousavi Madani and K. Kikuchi, “Design theory of long-distance WDM dispersion managed transmission system,” J. Lightwave Technol., vol.17, no.8, pp.1326–1335, 1999
  135. Fariborz Mousavi Madani and K. Kikuchi, “Performance limit of long-distance WDM dispersion-managed transmission system using higher-order dispersion compensation fibers,” IEEE Photonics Technol. Lett., vol.11, no.5, pp.608-610, 1999
  136. Han Chuen Lim, F. Futami, and K. Kikuchi, “Polarization-independent, wavelength-shift-free optical phase conjugator using a nonlinear fiber Sagnac interferometer,” IEEE Photonics Tech- nol. Lett., vol.11, no.5, pp.578-580, 1999
  137. Y. Takushima, Xiaomin Wang, and K. Kikuchi, “Transmission of 3 ps dispersion-managed soliton pulses over 80-km distance under influence of third-order dispersion,” Electron. Lett., vol.35, no.9, pp.739-740, 1999
  138. Y. Takushima and K. Kikuchi, “10-GHz, over 20-channel multiwavelength pulse source by slicing super-continuum spectrum generated in normal-dispersion fiber,” IEEE Photonics Technol. Lett., vol.11, no.3, pp.322-324, 1999
  139. Y. Takushima and K. Kikuchi, “Gain spectrum equalization of all-optical gain-clamped erbium-doped fiber amplifier,”IEEE Photonics Technol. Lett., vol.11, no.2, pp.176-178, 1999
  140. Y. Takushima, F. Futami, and K. Kikuchi, “Generation of over 140-nm-wide super-continuum from a normal dispersion fiber by using a mode-locked semiconductor laser source,” IEEE Photonics Technol. Lett., vol.10, no.11, pp.1560-1562, 1998
  141. F. Futami, Y. Takushima, and K. Kikuchi, “Generation of 10 GHz, 200 fs Fourier-transform-limited optical pulse train from modelocked semiconductor laser at 1.55 µm by pulse compression using dispersion-flattened fibre with normal group-velocity dispersion,” Electron. Lett., vo. 34, no.22, pp.2129-2130, 1998
  142. K. Kikuchi, F. Futami, and K. Katoh, “Highly sensitive and compact cross-correlator for measurement of picosecond pulse transmission characteristics at 1550 nm using two-photon absorption in Si avalanche photodiode,” Electron. Lett., vol.34, no.22, pp.2161-2162, 1998
  143. K. Kikuchi and K. Matsuura, “Transmission of 2-ps optical pulses at 1550 nm over 40-km standard fiber using midspan optical phase conjugation in semiconductor optical amplifiers,” IEEE Photonics Technol. Lett., vol.10, no.10, pp.1410-1412, 1998
  144. Y. Takushima and K. Kikuchi, “Polarisation-stable operation of modulation-instability laser using non-polarisation-maintaining fibres,” Electron. Lett. vol.34, no.13, pp.1323-1324, 1998
  145. K. Kikuchi, “Optical sampling system at 1.5 µm using two-photon absorption in Si avalanche photodiode,” Electron. Lett., vol.34, no.13, pp.1354-1355, 1998
  146. Y. Takushima and K. Kikuchi, “Gain stabilization of all-optical gain-clamped amplifier by using Faraday rotator mirrors,” Electron. Lett., vol.34, no.5, pp.458-459, 1998
  147. K. Kikuchi, “Highly sensitive interferometric autocorrelator using Si avalanche photodiode as two-photon absorber,” Electron. Lett., vol.34, no.1, pp.123-125, 1998
  148. Y. Takushima, S. Yamashita, K. Kikuchi, and K. Hotate, “Polarization-stable and single-frequency fiber lasers,” IEEE/ OSA J. Lightwave Technol., vol.16, no.4, pp.661-669, 1998
  149. H. Sotobayashi and K. Kikuchi, “Design theory of ultra-short pulse generation from actively mode-locked fiber lasers,” IEICE Trans. on Electron., vol.E81-C, no.2, pp.201-207, 1998
  150. F. Futami and K. Kikuchi, “Generation of 113-GHz, 1.8-ps optical pulse trains by Fourier synthethis of four-wave mixing signals obtained from semiconductor optical amplifiers,” Opt. Lett., vol.22, no.24, pp.1873-1875, 1997
  151. C. Lorattanasane and K. Kikuchi, “Parametric instability of optical-amplifier noise in long-distance optical transmission systems,” IEEE J. Quantum Electron., vol.33, no.7, pp.1068-1074,1997
  152. C. Lorattanasane and K. Kikuchi, “Design theory of long-distance optical transmission systems using midway optical phase conjugation,” IEEE/OSA J. Lightwave Technol., vol.15, no.6, pp.948-955, 1997
  153. J. Maeda and K. Kikuchi, “Squeezing characteristics analysis of fundamental-confined second-harmonic generation system by means of self-consistent method," J. Opt. Soc. Am. B, vol.14, no.3, pp.481-493, 1996
  154. J. Maeda and K. Kikuchi, “Bright squeezing by singly resonant second-harmonic generation: effect of fundamental depletion and feedback,” Opt. Lett., vol.21, no.11, pp.821-823,1996
  155. C. Lorattanasane and K. Kikuchi, “Design of long-distance optical transmission systems using midway optical phase congugation,” IEEE Photonics. Technol. Lett., vol.7, no.11, pp.1375-1377, 1995
  156. K. Kikuchi, C. Lorattanasane, F. Futami, and S. Kaneko, “Obserbation of quasi-phase matched four-wave mixing assisted by periodic power variation in a long-distance optical amplifier chain,” IEEE Photonics Technol. Lett., vol.7, no.11, pp.1378-1380, 1995
  157. Y. Isojima, T. Isoshima, K. Nagai, K. Kikuchi, and H. Nakagawa, “Ultraweak biochemiluminescence detected from rat hippocampal slices,” Neuro Report, vol.6, pp.658-660, 1995
  158. T. Isoshima, Y. Isojima, K. Hakomori, K. Kikuchi, K. Nagai, and H. Nakagawa, “Ultrahigh sensitivity single-photon detector using Si avalanche photodiode for the measurement of ultraweak biochemiluminescence,” Rev. Sci. Instrum., vol.66, no.4, pp.2922-2926, 1995
  159. Y. Takushima and K. Kikuchi, “Spectral gain hole burning and modulation instability in a Brillouin fiber amplifier,” Opt. Lett., vol.20, no.1, pp.34-36, 1995
  160. K. Kikuchi and C. Lorattanasane, “Design of highly effcient four-wave mixing devices using optical fibers,” IEEE Photonics Technol. Lett., vol.6, no.8, pp.992-994, 1994
  161. K. Kikuchi, K. Watanabe, and K. Katoh, “Amplitude squeezing of a multiple quantum-well distributed-feedback semiconductor laser operating at room temperature—Effect of reduction of spontaneous-emission noise by interferometric method,” Appl. Phys. Lett., vol.65, no.20, pp.2533-2535, 1994
  162. Y. Takushima and K. Kikuchi, “Photonic switching using spread spectrum technique,” Electron.Lett., vol.30, no.5, pp.436-437, 1994
  163. D. Ming and K. Kikuchi, “Improvement of fiber Raman soliton laser for femtosecond optical pulse generation,” Fiber and Integrated Optics, vol.13, pp.337-355, 1994
  164. K. Kikuchi, M. Amano, C. E. Zah, and T. P. Lee, “Analysis of origin of nonlinear gain in 1.5µm semiconductor active layers by highly nondegenerate four-wave mixing,” Appl. Phys. Lett., vol.64, no.5, pp.548-550, 1994
  165. K. Kikuchi, M. Amano, C. E. Zah, and T. P. Lee, “Measurement of differential gain and linewidth enhancement factor of 1.5-µm strained quantum-well active layers,” IEEE J. Quantum Electron., vol.30, no.2, pp.571-577, 1994
  166. K. Kikuchi and C. Lorattanasane, “Compensation for pulse waveform distortion in ultra-long distance optical communication systems by using midway optical phase conjugator,” IEEE Photonics Technol. Lett., vol.6, no.1, pp.104-105, 1994
  167. T. Sudo, Y. Nakano, K. Tada, K. Kikuchi, T. Hirata, and H. Hosomatsu, “Self-suppression effect of longitudinal spatial hole burning in absorptive-grating gain-coupled DFB lasers,” IEEE Photonics Technol. Lett., vol.5, no.11, pp.1276-1278, 1993
  168. K. Kikuchi, “Enhancement of optical amplifier noise due to the nonlinear refractive index and the group velocity dispersion of optical fibers,” IEEE Photonics Technol. Lett., vol.5, no.2, pp.221-223, 1993
  169. K. Kikuchi, “Theory of noise in optical amplifiers,” Fiber and Integrated Optics, vol.12, no.4, pp.369-380, 1993
  170. M. Ding and K. Kikuchi, “Noise characteristics of femtosecond fiber Raman soliton laser with high-Q cavity,” IEEE Photonics Technol. Lett., vol.4, no.10, pp.1109-1112, 1992
  171. M. Ding and K. Kikuchi, “Realization of femtosecond soliton oscillation in all-fiber Raman laser with soliton self-frequency shift suppression,” IEEE Photonics Technol. Lett., vol.4, no.8, pp.927-930, 1992
  172. K. Kikuchi and M. Kakui, “Reduction of shot noise with light emitting diodes,” IEEE J. Quan- tum Electron., vol.28, no.7, pp.1626-1630, 1992
  173. M. Ding and K. Kikuchi, “Limits of long-distance soliton transmission in optical fibers with laser diodes as pulse sources,” IEEE Photonics Technol. Lett., vol.4, no.6, pp.667-670, 1992
  174. M. Ding and K. Kikuchi, “Analysis of soliton transmission in optical fibers with the soliton self-frequency shift being compensated by distributed frequency dependent gain,” IEEE Photonics Technol. Lett., vol.4, no.5, pp.497-500, 1992
  175. K. Kikuchi, “Proposal and performance analysis of novel optical homodyne receiver having an optical preamplifier for achieving the receiver sensitivity beyond the shot-noise limit,” IEEE Photonics Technol. Lett., vol.4, no.2, pp.195-197, 1992
  176. K. Kikuchi, M. Kakui, C. E. Zah, and T. P. Lee, “Observation of highly nondegenerate four-wave mixing in 1.5-µm traveling-wave semiconductor optical amplfiers and estimation of nonlinear gain coeffcient,” IEEE J. Quantum Electron., vol.28, no.1, pp.151-156, 1992
  177. K. Kikuchi, M. Kakui, C. E. Zah, and T. P. Lee, “Differential gain and linewidth enhancement factor of 1.5µm multiple-quantum well active layers with and without biaxially compressive strain,” IEEE Photonics Technol. Lett., vol.3, no.4, pp.314-317, 1991
  178. K. Kikuchi, C. E. Zah, and T. P. Lee, “Measurement and analysis of phase noise generated from semiconductor optical amplifier,” IEEE J. Quantum Electron., vol.27, no.3, pp.416-422, 1991
  179. K. Kikuchi, “Frequency and phase control of light in coherent optical communication systems,” Electronics and communications in Japan, Part 2, vol.74, no.9, pp.1-10, 1991
  180. K.Kikuchi, “Generalised formula for optical-amplifier noise and its application to Erbium-doped fibre amplifiers,” Electron. Lett., vol.26, no.22, pp.1851-1853, 1990
  181. K. Kikuchi and H. Tomofuji, “Analysis of oscillation characteristics of separated-electrode DFB laser diode,” IEEE J. Quantum Electron., vol.26, no.10, pp.1717-1727, 1990
  182. K. Kikuchi, “Static frequency chirping in λ/4-phase-shifted distributed-feedback semiconductor lasers: Influence of carrier density nonuniformity due to spatial hole burning,” IEEE J. Quantum Electron., vol.26, no.1, pp.45-49, 1990
  183. K. Kikuchi, T. Isoshima, and M.Yamada, “Photon-counting receiver in near-infra-red region: Use of GaInAs avalanche photodiode,” Electron. Lett., vol.25, no.16, pp.1028-1029, 1989
  184. K. Kikuchi and H. Tomofuji, “Analysis of linewidth of separated-electrode DFB laser diode,” Electron. Lett., vol.25, no.14, pp.916-918, 1989
  185. K. Kikuchi, “Effect of 1/f-type FM noise on semiconductor-laser linewidth residual in high-power limit,” IEEE J. Quantum Electron., vol.25, no.4, pp.684-688, 1989
  186. K. Kikuchi and H. Tomofuji, “Performance analysis of separated-electrode DFB laser diode,” Electron. Lett., vol.25, no.2, pp.162-163, 1989
  187. K. Kikuchi, C. E. Zah, and T. P. Lee, “Amplitude-modulation sideband injection locking characteristics of semiconductor lasers and their applications,” J. Lightwave Technol., vol.6, no.12, pp.1821-1830, 1988
  188. K. Kikuchi and T. Naito, “Measurement of Raman scattering in single-mode optical fiber by optical-time domain reflectometry,” IEEE J. Quantum Electron., vol.24, no.10, pp.1973-1975,1988
  189. K. Kikuchi, “Lineshape measurement of semiconductor lasers below threshold,” IEEE J. Quantum Electron., vol.24, no.9, pp.1814-1817, 1988
  190. K. Kikuchi, “Origin of residual semiconductor-laser linewidth in high-power limit,” Electron.Lett., vol.24, no.16, pp.1001-1002, 1988
  191. K. Kikuchi and H. Iwasawa, “Measurement of linewidth enhancement factor of semiconductor lasers by modified direct frequency modulation method,” Electron. Lett., vol.24, no.13, pp.821-822, 1988
  192. T. Okoshi, O. Ishida, and K. Kikuchi, “Simple formula for bit-error rate in optical heterodyne DPSK systems employing polarization diversity,” Electron. Lett., vol.24, no.2, pp.120-122, 1988
  193. K. Kikuchi, “Precise estimation of linewidth reduction in wavelength-detuned DFB semiconductor lasers,” Electron. Lett., vol.24, no.2, pp.80-81, 1988
  194. K. Kikuchi and T. P. Lee, “Design theory of electrically frequency-controlled narrow-linewidth semiconductor lasers for coherent optical communication systems,” J. Lightwave Technol., vol.5, no.9, pp.1273-1276, 1987
  195. K. Kikuchi and T. P. Lee, “Spectral stability analysis of weakly coupled external cavity semiconductor laser,” J. Lightwave Technol., vol.5, no.9, pp.1269-1272, 1987
  196. K. Kikuchi, “Impact of 1/f-type FM noise on coherent optical communications,” Electron. Lett., vol.23, no.17, pp.885-887, 1987
  197. K. Kikuchi, C. E. Zah, and T. P. Lee, “Spectral, phase noise, and phase modulation characteristics of AM sideband injection-locked semiconductor lasers,”Electron. Lett., vol.23, no.9, pp.437-439, 1987
  198. K. Kikuchi, T. Okoshi, and A. Hirose, “Achievement of shot-noise-limited sensitivity and 50-dB dynamic range by photon-counting receiver using Si avalanche photodiode,” J. Lightwave Technol., vol.4, no.7, pp.828-832, 1986
  199. K. Kikuchi, T. Fukushima, and T. Okoshi, “Frequency-modulation characteristics of semiconductor lasers: Deviation from theoretical prediction by rate equation analysis,” Electron. Lett., vol.22, no.14, pp.741-743, 1986
  200. K. Kikuchi and T. Okoshi, “Measurement of FM noise, AM noise, and field spectra of 1.3µm InGaAsP DFB lasers and determination of the linewidth enhancement factor,” IEEE J. Quantum Electron., vol.21, no.11, pp.1814-1818, 1985
  201. K. Kikuchi and T. Okoshi, “Estimation of linewidth enhancement factor of AlGaAs lasers by correlation measurement between FM and AM noises,” IEEE J. Quantum Electron., vol.21, no.6, pp.669-673, 1985
  202. K. Kikuchi, T. Fukushima, and T. Okoshi, “Stripe-structure dependence of frequency modulation characteristics of AlGaAs lasers,” Electron. Lett., vol.21, no.23, pp.1088-1090, 1985
  203. K. Kikuchi and T. Okoshi, “Dependence of semiconductor laser linewidth on measurement time: Evidence of predominance of 1/f noise,” Electron. Lett., vol.21, no.20, pp.1011-1012 1985
  204. T. Okoshi, N. Fukaya, and K. Kikuchi, “New polarization-state control device: Rotatable fiber crank,” Electron. Lett., vol.21, no.20, pp.895-896, 1985
  205. K. Kikuchi, T. Okoshi, and A. Hirose, “Achievement of shot-noise-limited sensitivity and 50 dB dynamic range by photon-counting receiver using Si avalanche photodiode,” Electron. Lett., vol.21, no.18, pp.801-802, 1985
  206. T. Okoshi, Y. H. Cheng, and K. Kikuchi, “New polarization-control scheme for optical heterodyne receiver using two Faraday rotators,” Electron. Lett., vol.21, no.18, pp.787-788, 1985
  207. K. Kikuchi, “Calculated field spectra of semiconductor lasers near threshold,” Electron. Lett., vol.21, no.16, pp.705-706, 1985
  208. K. Kikuchi and T. Okoshi, “Measurement of field spectra of 1.3µm InGaAsP DFB lasers,” Electron. Lett., vol.21, no.6, pp.217-218, 1985
  209. K. Kikuchi, T. Okoshi, M.Nagamatsu, and N. Henmi, “Degradation of bit-error rate in coherent optical communications due to spectral spread of the transmitter and the local oscillator,” J. Lightwave Technol., vol.2, no.6, pp.1024-1033, 1984
  210. K. Kikuchi and T. Okoshi, “FM- and AM-noise spectra of 1.3µm InGaAsP DFB lasers in 0-3GHz range and determination of their linewidth enhancement factor α,” Electron. Lett., vol.20, no.25/26, pp.1044-1045, 1984
  211. K. Kikuchi, T. Okoshi, and T. Kawai, “Estimation of linewidth enhancement factor α of CSP-type AlGaAs lasers from measured correlation between AM and FM noises,” Electron. Lett., vol.20, no.11, pp.450-451, 1984
  212. K. Kikuchi, T. Okoshi, and R. Arata, “Measurement of linewidth and FM-noise spectrum of 1.52µm InGaAsP lasers,” Electron. Lett., vol.20, no.13, pp.535-536, 1984
  213. K. Kikuchi, T. Okoshi, and S. Tanikoshi, “Amplitude modulation of an injection-locked semiconductor laser for heterodyne-type optical communications,” Opt. Lett., vol.9, no.3, pp.99-101, 1984
  214. T. Okoshi, T. Aihara, and K. Kikuchi, “Prediction of the ultimate performance of side-tunnel single-polarization fiber,” Electron. Lett., vol.19, no.25, pp.1080-1082, 1983
  215. K. Kikuchi and T. Okoshi, “Measurement of spectra of and correlation between FM and AM noises in GaAlAs lasers,” Electron. Lett., vol.19, no.20, pp.812-813, 1983
  216. K. Kikuchi, T. Okoshi, M.Nagamatsu, and N. Henmi, “Bit-error rate of PSK heterodyne optical communication system and its degradation due to spectral spread of transmitter and local oscillator,” Electron. Lett., vol.19, no.11, pp.417-418, 1983
  217. K. Kikuchi and T. Okoshi, “Wavelength-sweeping technique for measuring the beat length of linearly birefringent optical fibers,” Opt. Lett., vol.8, no.2, pp.122-123, 1983
  218. K. Kikuchi and T. Okoshi, “Simple formula giving spectrum-narrowing ratio of semiconductor-laser output obtained by optical feedback,” Electron. Lett., vol.18, no.1, pp.10-12, 1982
  219. K. Kikuchi, T. Okoshi, and J. Kitano, “Measurement of bit-error rate of heterodyne-type optical communication system—A simulation experiment,” IEEE J. Quantum Electron., vol.17, no.12, pp.2266-2267, 1981
  220. K. Kikuchi, T. Okoshi, and S. Kawanishi, “Achievement of 1 MHz frequency stability of semi- conductor lasers by double-loop AFC,” Electron. Lett., vol.17, no.15, pp.515-516, 1981
  221. T. Okoshi, K. Emura, K. Kikuchi, and R. Th. Kersten, “Computation of bit-error rate of various heterodyne and coherent-type optical communication schemes,” J. Opt. Commun., vol.2, no.3, pp.89-96, 1980
  222. T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett., vol.16, no.16, pp.630-631, 1980
  223. T. Okoshi and K. Kikuchi, “Frequency stabilization of semiconductor lasers for heterodyne-type optical communication systems,” Electron. Lett., vol.16, no.5, pp.179-181, 1980
  224. K. Kikuchi and K. Tada, “Theory of electric field-induced optical second harmonic generation in semiconductors,” Opt. and Quantum Electron., vol.12, pp.199-205, 1980
  225. K. Kikuchi, K. Tada, and M. Aoki, “Theory of resonant forbidden Raman scattering in semiconductors,” J. Phys. Chem. Solids, vol.41, pp.1361-1366, 1980
  226. K. Tada and K. Kikuchi, “Elastooptic effect in BaTiO3 ,” Jap. J. Appl. Phys., vol.19, no.7, pp.1311-1315, 1980
  227. K. Kikuchi and K. Tada, “Dispersion of the linear electrooptic coeffcient and its relation to resonant Raman scattering in ZnSe,” Jap. J. Appl. Phys., vol.17, no.5, pp.825-829, 1978
  228. K. Tada, K. Kikuchi, and K. Sato, “Dispersion of photoelastic coeffcients in ZnSe,” Jap. J.Appl. Phys., vol.16, no.5, pp.757-760, 1977

III. Journal Papers (in Japanese)

  1. 富澤, 尾中, 水落, 福知, 菊池, “ディジタルコヒーレント方式による100 Gbps 級光ファイバ伝送システムの研究開発,” 電子情報通信学会論文誌B vol. J100–B, no. 9 pp. 602–610 (2017年9月)
  2. 菊池, “ディジタルコヒーレント光受信器における適応等化技術,” 電子情報通信学会論文誌(B), vol.J96-B, no.3, pp.212-219 (2013年 3月)
  3. 菊池, “コヒーレント光ファイバー通信の新展開,” 応用物理 78 巻 9 号, pp.856–861 (2009年 9月)
  4. 菊池,“ディジタルコヒーレント光通信技術,” 光学 38 巻 5 号, pp.258–262 (2009 年 5 月)
  5. 菊池,“デジタル信号処理を駆使した新しいコヒーレント光通信技術,” レーザー研究 37 巻 3 号, pp.164–170 (2009年3月)
  6. 菊池,種村, “光ファイバ中の四光波混合効果を用いた波長変換,” レーザー研究, vol.32, no.8, pp.505-511 (2004年 8月)
  7. 菊池,多久島,“長距離光ファイバ伝送における分散マネージメント,” 電子情報通信学会誌, vol.83, no.10, pp.743-747 (2000 年 10月)
  8. 菊池, “超短光パルス測定法,” レーザー研究, vol.27, no.11, pp.762-767 (1999年 11月)
  9. 菊池, 多久島, “光ファイバの非線形光学効果とデバイス,” 光学,vol.27, no.3, pp.112-117 (1998年 3月)
  10. 菊池, “位相共役光ファイバ通信システム,” レーザー研究, vol.24, no.6, pp.19-25 (1996年 6月)
  11. 菊池, “コヒーレント光通信における光の周波数・位相制御技術,” 電子情報通信学会誌 C-I, vol.J73- C-I, no.5, pp.199-206 (1990年 5月)
  12. 菊池, “コヒーレント光通信用デバイス,” 電子通信学会誌, vol.69, no.8 pp.816-823 (1986年 8月)
  13. 大越, 菊池, “ヘテロダイン型ならびにコヒーレント型光ファイバ通信,” 電子通信学会誌, vol.65, no.10, pp.1099-1105 (1982年 10月)

Top