3章 関数とグラフ

BASIC

172 $y = f(x)$ とする。

(1) $f(-x) = 3 \cdot (-x)$
 $= -3x = -f(x)$
 よって，奇関数

(2) $f(-x) = (-x) - 1$
 $= -x - 1$
 よって，偶関数でも奇関数でもない

(3) $f(-x) = (-x)^2$
 $= -x^2 = f(x)$
 よって，偶関数

(4) $f(-x) = -(-x)^2$
 $= x^2 = f(x)$
 よって，偶関数

(5) $f(-x) = -(x)^2 + (-x)$
 $= x^2 - x$
 よって，偶関数でも奇関数でもない

(6) $f(-x) = (-x - 1)^2$
 $= (-x + 1)^2$
 よって，偶関数でも奇関数でもない

(7) $f(-x) = \frac{1}{2} \cdot (-x)^3$
 $= \frac{1}{2} \cdot (-x^3)$
 $= -\frac{1}{2} x^3 = -f(x)$
 よって，奇関数

(8) $f(-x) = \frac{1}{-x}$
 $= -\frac{1}{x} = -f(x)$
 よって，奇関数

(9) $f(-x) = \frac{-x + 1}{-x}$
 $= \frac{x - 1}{x}$
 よって，偶関数でも奇関数でもない

以上より
偶関数は (3)(4)
奇関数は (1)(7)(8)

173 (1) この関数のグラフは，$y = x^3$ のグラフを x 軸方向に 1，y 軸方向に −2 平行移動したものである。
 また，$x = 0$ のとき
 $y = (0 - 1)^3 - 2 = -1 - 2 = -3$

(2) この関数のグラフは，$y = -2x^3$ のグラフを x 軸方向に −1，y 軸方向に 3 平行移動したものである。
 また，$x = 0$ のとき
 $y = -2(0 + 1)^3 + 3 = -2 + 3 = 1$

(3) この関数のグラフは，$y = \frac{1}{2}x^4$ のグラフを x 軸方向に 2，y 軸方向に 1 平行移動したものである。
 また，$x = 0$ のとき
 $y = \frac{1}{2}(0 - 2)^4 + 1 = 8 + 1 = 9$

(4) この関数のグラフは，$y = x^4$ のグラフを x 軸方向に −1，y 軸方向に −1 平行移動したものである。
 また，$x = 0$ のとき
 $y = (0 + 1)^4 - 1 = 1 - 1 = 0$
174 (1) この関数のグラフは, $y = \frac{2}{x}$ のグラフを x 軸方向に -1 平行移動したものである。

漸近線は, $x = 1, y = 0$。
また, $x = 0$ のとき
$y = \frac{2}{0+1} = 2$

(2) この関数のグラフは, $y = -\frac{2}{x}$ のグラフを y 軸方向に 2 平行移動したものである。

漸近線は, $x = 0, y = 2$。
また, $y = 0$ のとき
$0 = 2 - \frac{2}{x}$ より, $x = 1$

(3) $y = \frac{3}{2(x+1)} = \frac{3}{2(x+1)}$

この関数のグラフは, $y = \frac{3}{2}$ のグラフを x 軸方向に -1 平行移動したものである。

漸近線は, $x = 1, y = 0$。
また, $x = 0$ のとき
$y = \frac{3}{0+2} = \frac{3}{2}$

(4) $y = \frac{(x+1)+3}{x+1} = \frac{3}{x+1} + 1$

この関数のグラフは, $y = \frac{3}{x}$ のグラフを x 軸方向に -1, y 軸方向に 1 平行移動したものである。

漸近線は, $x = 1, y = 1$。
また, $x = 0$ のとき
$y = \frac{0+4}{0+1} = 4$
$y = 0$ のとき
$0 = \frac{x+4}{x+1}$ より, $x = -4$

175 (1) $x + 2 \geq 0$ より, $x \geq -2$

(2) $x + 1 > 0$ より, $x > -1$

(3) $-x^2 + 3x + 4 \geq 0$ より
$x^2 - 3x - 4 \leq 0$
$(x+1)(x-4) \leq 0$
よって, $-1 \leq x \leq 4$

(4) $x^2 - 4x + 5 \geq 0$ より
$(x-2)^2 + 1 \geq 0$
左辺 > 0 であるから, これは, 常に成り立つ。
よって, 定義域はすべての実数

176 (1) この関数のグラフは, $y = \sqrt{x}$ のグラフを x 軸方向に 2 平行移動したものである。

定義域は, $x - 2 \geq 0$ より, $x \geq 2$, 値域は, $y \geq 0$
（2）この関数のグラフは，\(y = \sqrt{x} \) のグラフを y 軸方向に -2
平行移動したものである。
定義域は，\(x \geq 0 \)，値域は，\(y \geq -2 \)
また，\(y = 0 \) のとき，\(0 = \sqrt{x} - 2 \) より，\(x = 1 \)

（3）この関数のグラフは，\(y = \sqrt{x} \) のグラフを x 軸方向に -3，
y 軸方向に -1 平行移動したものである。
定義域は，\(x + 3 \geq 0 \) より，\(x \geq -3 \)，値域は，\(y \geq -1 \)
また，\(x = 0 \) のとき，\(y = \sqrt{0 + 3} - 1 = \sqrt{3} - 1 \)

177 (1) \(y = -(x^3 - 2x^2) \)
\[= -x^3 + 2x^2 \]
よって，\(y = -x^3 + 2x^2 \)

（2）\(y = (-x)^3 - 2(-x)^2 \)
\[= -x^3 + 2x^2 \]
よって，\(y = -x^3 - 2x^2 \)

（3）\(y = -(-x^3 - 2(-x)^2) \)
\[= -(x^3 - 2x^2) \]
\[= x^3 + 2x^2 \]
よって，\(y = x^3 + 2x^2 \)

178 (1) この関数のグラフは，\(y = -\sqrt{x} \) のグラフを x 軸方向に -2
平行移動したものである。
定義域は，\(x + 2 \geq 0 \) より，\(x \geq -2 \)，値域は，\(y \leq 0 \)
また，\(x = 0 \) のとき，\(y = -\sqrt{0 + 2} = -\sqrt{2} \)

（2）\(y = \sqrt{-x} \) であるから，この関数のグラフは，\(y = \sqrt{x} \) のグラフを x 軸方向に -2 平行移動したものである。
定義域は，\(-x - 2 \geq 0 \) より，\(x \leq -2 \)，値域は，\(y \geq 0 \)

（3）\(y = -\sqrt{x-2} \) であるから，この関数のグラフは，\(y = \sqrt{x} \) のグラフを x 軸方向に -2 平行移動したものである。
定義域は，\(-x + 2 \geq 0 \) より，\(x \leq 2 \)，値域は，\(y \geq 0 \)

（4）\(y = -\sqrt{-x+2} \) であるから，この関数のグラフは，\(y = \sqrt{x} \) のグラフを x 軸方向に -2 平行移動したものである。
定義域は，\(-x + 1 \geq 0 \) より，\(x \leq 1 \)，値域は，\(y \leq 0 \)
また，\(x = 0 \) のとき，\(y = 2\sqrt{0 + 1} = -2 \)

（5）\(y = -\sqrt{2x-x-1} \) であるから，この関数のグラフは，\(y = \sqrt{-x} \) のグラフを x 軸方向に -1 平行移動したものである。
定義域は，\(2 - 2x \geq 0 \) より，\(x \leq 1 \)，値域は，\(y \leq 0 \)
また，\(x = 0 \) のとき，\(y = -\sqrt{2(0+1)} = -\sqrt{2} \)

（6）\(y = 2\sqrt{-x} \) であるから，この関数のグラフは，\(y = \sqrt{x} \) のグラフを x 軸方向に -1 平行移動したものである。
定義域は，\(1 - x \geq 0 \) より，\(x \leq 1 \)，値域は，\(y \geq 0 \)
また，\(x = 0 \) のとき，\(y = 2\sqrt{1 - 0} = 2 \)
179 1 この関数の定義域は、x = 1、値域は、y = 0 であるから、逆関数の定義域、値域はそれぞれ
x = 0、y = 1
逆関数は、x = 1 / y
これを、y について解くと
(y - 1) x = 1
yx - x = 1
yx = x + 1
y = x + 1 / x (x = 0 より)
= x / x + 1
よって、逆関数は、y = 1 / x + 1
定義域、値域はそれぞれ
x ≈ 0、y ≈ 1

(2) この関数の定義域は、x ≥ 0、値域は、y ≥ 1 であるから、逆関数の定義域、値域はそれぞれ
x ≥ 1、y ≥ 0
逆関数は、x = 2y^2 - 1
これを y について解くと
2y^2 - 1 = x
2y^2 = x + 1
y^2 = x + 1 / 2
y = √x + 1 / 2 (y ≥ 0 より)
よって、逆関数は、y = √x + 1 / 2
定義域、値域はそれぞれ
x ≥ -1、y ≥ 0

(3) この関数の定義域は、x ≥ 0、値域は、y ≤ 0 であるから、逆関数の定義域、値域はそれぞれ
x ≤ 0、y ≥ 0
逆関数は、x = -√y
これを y について解くと
√y = -x
y = (-x)^2
= x^2
よって、逆関数は、y = x^2
定義域、値域はそれぞれ
x ≤ 0、y ≥ 0

(4) この関数の定義域は、-2x ≥ 0 より、x ≤ 1 / 2、値域は、y ≥ -1 であるから、逆関数の定義域、値域はそれぞれ
x ≥ -1、y ≤ 1 / 2
逆関数は、x = √(1 - 2y) - 1
これを y について解くと
√1 - 2y = x + 1
1 - 2y = (x + 1)^2
2y = -(x + 1)^2 + 1
y = -1 / 2(x + 1)^2 + 1 / 2
よって、逆関数は、y = -1 / 2(x + 1)^2 + 1 / 2

定義域、値域はそれぞれ
x ≥ -1、y ≤ 1 / 2

CHECK

180 (1) f(x) = -x
= -(x) = -f(x)
よって、奇関数

(2) f(x) = (-x)^2 - 1
= x^2 - 1 = f(x)
よって、偶関数

(3) f(x) = -x((-x)^2 - 1)
= -(x^2 - 1) = -f(x)
よって、奇関数

(4) f(x) = 1 = f(x)
よって、偶関数

(5) f(x) = 1 + (-x)^4
= 1 + x^4 = f(x)
よって、偶関数

(6) f(x) = 1 + (-x)^3
= 1 - x^3
よって、偶関数でも奇関数でもない。

181 (1) y = 2(x + 2) - 5 / x + 2 = -5 / x + 2 + 2
定義域は、x ≈ -2、値域は、y ≈ 2

(2) 定義域は、x + 3 ≥ 0 より、x ≥ -3
値域は
√x + 3 ≥ 0
-√x + 3 ≤ 0
-√x + 3 + 3 ≥ 0 + 3
すなわち、y ≥ 3

182 求める関数の式は
y = 2 / x - (-1) + 3
すなわち、y = -2 / x + 1 + 3

183 求める関数の式は
y = √2[x - (-2)] - 3
すなわち、y = √2(x + 2) - 3

184 (1) この関数のグラフは、y = 2x^3 のグラフを x 軸方向に 1、y 軸方向に 1 平行移動したものである。
また、x = 0 のとき
y = 2(0 - 1)^3 + 1 = -2 + 1 = -1
(2) この関数のグラフは, \(y = -x^4 \) のグラフを \(y \) 軸方向に -1,
\(y \) 軸方向に \(-1 \) 平行移動したものをある

また, \(x = 0 \) のとき

\[y = -(0+1)^4 - 1 = -1 - 1 = -2 \]

(3) \[y = \frac{\left(x - \frac{1}{2} \right) + 3}{2 \left(x - \frac{1}{2} \right)} = \frac{3}{2} + \frac{1}{2} \]

この関数のグラフは, \(y = \frac{3}{x} \) のグラフを \(x \) 軸方向に \(-\frac{1}{2} \),
\(y \) 軸方向に \(\frac{1}{2} \) 平行移動したものである.

漸近線は, \(x = \frac{1}{2}, \quad y = \frac{1}{2} \).

また, \(x = 0 \) のとき

\[y = \frac{0+1}{0-1} = 1 \]

(4) \[y = \frac{3(x+2) - 7}{2(x+2)} = \frac{\frac{7}{2} + \frac{3}{2}}{x+2} \]

この関数のグラフは, \(y = \frac{3}{x} \) のグラフを \(x \) 軸方向に -2,
\(y \) 軸方向に \(-\frac{3}{2} \) 平行移動したものである.

漸近線は, \(x = -2, \quad y = \frac{3}{2} \).

また, \(x = 0 \) のとき

\[y = \frac{0 - 1}{0+4} = -\frac{1}{4} \]

185 (1) \[y = \sqrt{3} \left(x - \frac{5}{3} \right) + 3 \] であるから, この関数のグラフは,
\(y = \sqrt{3} \) のグラフを \(x \) 軸方向に \(\frac{5}{3} \),
\(y \) 軸方向に \(3 \) 平行移動したものである.

定義域は, \(3x - 5 \geq 0 \) より, \(x \geq \frac{5}{3} \), 値域は, \(y \geq 3 \)

(2) この関数のグラフは, \(y = 3 \sqrt{x} \) のグラフを \(x \) 軸方向に 2,
\(y \) 軸方向に 1 平行移動したものである.

定義域は, \(x - 2 \geq 0 \) より, \(x \geq 2 \), 値域は, \(y \geq 1 \)

186 \[y = \frac{-\left(x + \frac{1}{3} \right) - \frac{2}{3}}{3 \left(x + \frac{1}{3} \right)} = \frac{-\frac{2}{3} - \frac{1}{3}}{x + \frac{1}{3}} \]

よって, この関数のグラフは, \(y = \frac{-\frac{2}{3}}{x} \) のグラフを \(x \) 軸方向に
\(\frac{-\frac{2}{3}}{x} \) 軸方向に \(\frac{-\frac{2}{3}}{x} \) 平行移動したものである.

漸近線は, \(x = -\frac{1}{3}, \quad y = -\frac{1}{3} \).

また, \(x = -1 \) のとき, \(y = \frac{1}{3} + \frac{1}{3} = 0 \)

\(x = 2 \) のとき, \(y = \frac{-2 - \frac{1}{3}}{0 + \frac{1}{3}} = -\frac{3}{2} \)

とどろき実数整
グラフより，領域は，$y \leq - \frac{3}{7}$，$y \geq 0$

187 $y = \sqrt{2 - \left(x - \frac{a}{2} \right)}$ であるから，この関数のグラフは，$y = \sqrt{2 - x}$ のグラフを x 軸方向に $\frac{a}{2}$ 平行移動したものである。

このグラフは単調に減少するので，$x = -11$ のとき，$y = 5$，$x = -3$ のとき，$y = 3$ となる。

$y = \sqrt{2 - 2x + a + 3}$ に，これらを代入して

\begin{align*}
3 &= \sqrt{2 - 2 \cdot (-3) + a} \quad \cdots (1) \\
5 &= \sqrt{2 - 2 \cdot (-11) + a} \quad \cdots (2)
\end{align*}

$①$より

\begin{align*}
3 &= \sqrt{6 + a} \\
6 &= 6 + a \\
a &= 3
\end{align*}

$②$より

\begin{align*}
5 &= \sqrt{22 + a} \\
25 &= 22 + a \\
a &= 3
\end{align*}

よって，$a = 3$

188 (1) $y = (x - 2)^2$ すると，この関数の値域は，$y \geq 0$ であるから，逆関数の定義域，値域はそれぞれ

$x \geq 0, y \leq 2$

逆関数は，$x = (y - 2)^2$

これを，y について解くと

\[(y - 2)^2 = x\]

\[y - 2 = \pm \sqrt{x} \quad (y \leq 2 \, かつ \, y \geq 0)\]

\[y - 2 = \sqrt{x} \quad (x \geq 0)\]

よって，$g(x) =\sqrt{x + 2} \quad (x \geq 0)$

(2) $y = f(x)$ と $y = g(x)$ のグラフは，直線 $y = x$ に関して対称であるから，$y = f(x)$ と $y = g(x)$ のグラフの交点は，$y = f(x)$ と直線 $y = x$ のグラフの交点と一致する。

\[
\begin{aligned}
y &= (x - 2)^2 \quad (x \leq 2) \\
y &= x
\end{aligned}
\]

を解くと

\[
\begin{aligned}
x &= (x - 2)^2 \\
x &= x^2 - 4x + 4 \\
x^2 - 5x + 4 &= 0 \\
(x - 1)(x - 4) &= 0 \\
x &= 1, 4
\end{aligned}
\]

$x \leq 2$ より，$x = 1$

これより，$y = 1$ であるから，求める交点は，$(1, 1)$

189 与えられた関数のグラフを，x 軸方向に 2 倍に拡大したグラフの式は

\[
y = \frac{1}{2} \cdot \frac{1}{x - 3} = \frac{2}{x - 6}
\]

この関数のグラフを，y 軸方向に 2 倍に拡大したグラフの式は

\[
y = 2 \left(\frac{2}{x - 6} \right)
\]

よって，$y = \frac{4}{x - 6}$

STEP UP

190 (1) 求める双曲線の方程式を $y = \frac{a}{x + 2} + q$ とおくと，この双曲線が 2 点 (2, 4), (-1, 7) を通ることから

\[
\begin{aligned}
4 &= \frac{a}{2 + 2} + q \quad \cdots (1) \\
7 &= \frac{a}{-1 + 2} + q \quad \cdots (2)
\end{aligned}
\]

$①$より

\[
\begin{aligned}
4 &= \frac{a}{4} + q \\
16 &= a + 4q
\end{aligned}
\]

$②$より

\[
\begin{aligned}
7 &= \frac{a}{3} + q \\
7 &= a + q
\end{aligned}
\]

したがって

\[
\begin{aligned}
a + 4q &= 16 \\
a + q &= 7
\end{aligned}
\]

これを解いて，$a = 4, q = 3$

よって，$y = \frac{4}{x + 2} + 3$

(2) 求める双曲線の方程式を $y = \frac{a}{x - p} + 2$ とおくと，この双曲線が 2 点 (4, 6), (-2, -2) を通ることから

\[
\begin{aligned}
6 &= \frac{a}{4 - p} + 2 \quad \cdots (1) \\
-2 &= \frac{a}{-2 - p} + 2 \quad \cdots (2)
\end{aligned}
\]

ただし，$p \pm 2, 4, a \neq 0$

$①$より

\[
\begin{aligned}
4 &= \frac{a}{4 - p} \\
4(4 - p) &= a
\end{aligned}
\]
16 = a + 4p

(3)
求める双曲線の方程式を \(y = \frac{2}{x - p} + q \) とおくと，この双曲線が2点(-2, 8), (-4, 10)を通ることから
\[
\begin{align*}
8 &= \frac{3}{-2 - p} + q \quad \cdots (1) \\
10 &= \frac{3}{-4 - p} + q \quad \cdots (2)
\end{align*}
\]
ただし，p = -2，-4，q = 8, 10

1. - 2 より
\[
-2 = \frac{3}{-2 - p} - \frac{3}{4 - p}
\]
両辺に \((p + 2)(p + 4)\) をかけて
\[
2(p + 2)(p + 4) = 3(p + 4) - 3(p + 2)
\]
\[
2(p^2 + 6p + 8) = 3p + 12 - 3p - 6
\]
\[
p^2 + 6p + 5 = 0
\]
\[
(p + 5)(p + 1) = 0
\]
したがって，p = -5, -1

\(p = -5 \) のとき
\[
q = 8 - \frac{3}{-2 - (-5)} = 8 - 1 = 7
\]
\(p = -1 \) のとき
\[
q = 8 - \frac{3}{-2 - (-1)} = 8 + 3 = 11
\]
よって，(p, q) = (-5, 7), (1, 11)であるから
\[
y = \frac{3}{x + 5} + 7, \quad y = \frac{3}{x + 1} + 11
\]

191 2つのグラフに共有点が2個となるのは，下の図のように，点(-1, 0)を通る直線と，曲線に接する直線との間に直線がある場合である。

\[
\begin{align*}
y &= \frac{1}{3}x + k \quad \text{に} \quad x = -1, \quad y = 0
\end{align*}
\]
を代入して
\[
0 = -\frac{1}{3} + k, \quad \text{すなわち} \quad k = \frac{1}{3}
\]

2つのの方程式を連立させるとき
\[
\begin{align*}
2\sqrt{x + 1} &= \frac{2}{x - k}, \\
6\sqrt{x + 1} &= x + 3k
\end{align*}
\]

両辺を2乗して整理すると
\[
36(x + 1) = x^2 + 6kx + 9k^2
\]
\[
x^2 + 6(k - 6)x + 9(k^2 - 4) = 0
\]
判別式を \(D \) とすると
\[
\begin{align*}
D &= (3(k - 6))^2 - 9(k^2 - 4) \\
&= 9(k^2 - 12k + 36) - 9(k^2 - 4) \\
&= 9(k^2 - 12k + 36 - k^2 + 4) \\
&= 9(-12k + 40)
\end{align*}
\]
2つのグラフが接するのは， \(D = 0 \) のときなので
\[
-12k + 40 = 0, \quad \text{すなわち} \quad k = \frac{10}{3}
\]
よって，求める \(k \) の範囲は， \(-\frac{2}{3} \leq k < \frac{10}{3} \)

192 2つのグラフが共有点が2個ないのは，下の図のように，曲線に接する2本の直線の間で直線がある場合である。

\[
\begin{align*}
\frac{1}{x} &= -\frac{1}{4}x + k \\
4 &= -x^2 + 4kx \\
x^2 - 4kx + 4 &= 0
\end{align*}
\]
判別式を \(D \) とすると
\[
\begin{align*}
D &= (-2k)^2 - 4 \\
&= 4k^2 - 4
\end{align*}
\]
2つのグラフが接するのは， \(D = 0 \) のときなので
\[
4k^2 - 4 = 0, \quad \text{すなわち} \quad k = \pm 1
\]
よって，求める \(k \) の範囲は， \(-1 < k < 1 \)

193 (1) i) \(1 - x^2 \geq 0 \) のとき
\[
x^2 - 1 \leq 0
\]
\[
(x + 1)(x - 1) \leq 0
\]
すなわち， \(-1 \leq x \leq 1 \) のとき
\[
y = 1 - x^2
\]
\[
y = -x^2 + 1
\]
ii) \(1 - x^2 < 0 \) のとき
\[
x^2 - 1 > 0
\]
\[
(x + 1)(x - 1) > 0
\]
すなわち， \(x < -1, \quad 1 < x \) のとき
\[
y = -(1 - x^2)
\]
\[
y = x^2 - 1
\]
以上より
\[
y = \begin{cases}
- x^2 + 1 \quad (1 \leq x \leq 1) \\
x^2 - 1 \quad (x < -1, \quad 1 < x)
\end{cases}
\]
よって，グラフは次のようなになる。

(2) i) $x \geq 0$ のとき
$y = x^2 - 2x + 1$
$= (x - 1)^2$

ii) $x < 0$ のとき
$y = x^2 - 2 \cdot (-x) + 1$
$= x^2 + 2x + 1$
$= (x + 1)^2$

以上より
$y = \begin{cases} (x - 1)^2 & (x \geq 0) \\ (x + 1)^2 & (x < 0) \end{cases}$

よって，グラフは次のようなになる。