Some Magic Square
\begin{align*}
3\begin{pmatrix}
2 & 0 & 1 \\
0 & 1 & 2 \\
1 & 2 & 0 \\
\end{pmatrix}
+\begin{pmatrix}
2 & 0 & 1 \\
0 & 1 & 2 \\
1 & 2 & 0 \\
\end{pmatrix}^m
=
\begin{pmatrix}
6 & 0 & 3 \\
0 & 3 & 6 \\
3 & 6 & 0 \\
\end{pmatrix}
+\begin{pmatrix}
1 & 0 & 2 \\
2 & 1 & 0 \\
0 & 2 & 1 \\
\end{pmatrix}
=
\begin{pmatrix}
7 & 0 & 5 \\
2 & 4 & 6 \\
3 & 8 & 1 \\
\end{pmatrix}
\equiv
\begin{pmatrix}
8 & 1 & 6 \\
3 & 5 & 7 \\
4 & 9 & 2 \\
\end{pmatrix}
\end{align*}
\begin{align*}
4\begin{pmatrix}
0 & 1 & 2 & 3 \\
3 & 2 & 1 & 0 \\
1 & 0 & 3 & 2 \\
2 & 3 & 0 & 1 \\
\end{pmatrix}
+\begin{pmatrix}
0 & 1 & 2 & 3 \\
3 & 2 & 1 & 0 \\
1 & 0 & 3 & 2 \\
2 & 3 & 0 & 1 \\
\end{pmatrix}^t
=
\begin{pmatrix}
0 & 4 & 8 & 12 \\
12 & 8 & 4 & 0 \\
4 & 0 & 12 & 8 \\
8 & 12 & 10 & 4 \\
\end{pmatrix}
+\begin{pmatrix}
0 & 3 & 1 & 2 \\
1 & 2 & 0 & 3 \\
2 & 1 & 3 & 0 \\
3 & 0 & 2 & 1 \\
\end{pmatrix}
=
\begin{pmatrix}
0 & 7 & 9 & 14 \\
13 & 10 & 4 & 3 \\
6 & 1 & 15 & 8 \\
11 & 12 & 2 & 5 \\
\end{pmatrix}
\equiv
\begin{pmatrix}
1 & 8 & 10 & 15 \\
14 & 11 & 5 & 4 \\
7 & 2 & 16 & 9 \\
12 & 13 & 3 & 6 \\
\end{pmatrix}
\end{align*}
\begin{align*}
4\begin{pmatrix}
1 & 2 & 3 & 0 \\
0 & 3 & 2 & 1 \\
2 & 1 & 0 & 3 \\
3 & 0 & 1 & 2 \\
\end{pmatrix}
+\begin{pmatrix}
1 & 2 & 3 & 0 \\
0 & 3 & 2 & 1 \\
2 & 1 & 0 & 3 \\
3 & 0 & 1 & 2 \\
\end{pmatrix}^t
\equiv
\begin{pmatrix}
6 & 9 & 15 & 4 \\
3 & 16 & 10 & 5 \\
12 & 7 & 1 & 14 \\
13 & 2 & 8 & 11 \\
\end{pmatrix}
\end{align*}
\begin{align*}
4\begin{pmatrix}
3 & 0 & 1 & 2 \\
2 & 1 & 0 & 3 \\
0 & 3 & 2 & 1 \\
1 & 2 & 3 & 0 \\
\end{pmatrix}
+\begin{pmatrix}
3 & 0 & 1 & 2 \\
2 & 1 & 0 & 3 \\
0 & 3 & 2 & 1 \\
1 & 2 & 3 & 0 \\
\end{pmatrix}^t
\equiv
\begin{pmatrix}
16 & 3 & 5 & 10 \\
9 & 6 & 4 & 15 \\
2 & 13 & 11 & 8 \\
7 & 12 & 14 & 1 \\
\end{pmatrix}
\end{align*}
--- --- ---
\begin{align*}
5\begin{pmatrix}
0 & 1 & 2 & 3 & 4 \\
2 & 3 & 4 & 0 & 1 \\
4 & 0 & 1 & 2 & 3 \\
1 & 2 & 3 & 4 & 0 \\
3 & 4 & 0 & 1 & 2 \\
\end{pmatrix}
+\begin{pmatrix}
0 & 1 & 2 & 3 & 4 \\
2 & 3 & 4 & 0 & 1 \\
4 & 0 & 1 & 2 & 3 \\
1 & 2 & 3 & 4 & 0 \\
3 & 4 & 0 & 1 & 2 \\
\end{pmatrix}^m
=
\begin{pmatrix}
0 & 5 & 10 & 15 & 20 \\
10 & 15 & 20 & 0 & 5 \\
20 & 0 & 5 & 10 & 15 \\
5 & 10 & 15 & 20 & 0 \\
15 & 20 & 0 & 5 & 10 \\
\end{pmatrix}
+\begin{pmatrix}
4 & 3 & 2 & 1 & 0 \\
1 & 0 & 4 & 3 & 2 \\
3 & 2 & 1 & 0 & 4 \\
0 & 4 & 3 & 2 & 1 \\
2 & 1 & 0 & 4 & 3 \\
\end{pmatrix}
=
\begin{pmatrix}
4 & 8 & 12 & 16 & 20 \\
11 & 15 & 24 & 3 & 7 \\
23 & 2 & 6 & 10 & 19 \\
5 & 14 & 18 & 22 & 1 \\
17 & 21 & 0 & 9 & 13 \\
\end{pmatrix}
\equiv
\begin{pmatrix}
5 & 9 & 13 & 17 & 21 \\
12 & 16 & 25 & 4 & 8 \\
24 & 3 & 7 & 11 & 20 \\
6 & 15 & 19 & 23 & 2 \\
18 & 22 & 1 & 10 & 14 \\
\end{pmatrix}
\end{align*}
\begin{align*}
5\begin{pmatrix}
0 & 1 & 2 & 3 & 4 \\
2 & 3 & 4 & 0 & 1 \\
4 & 0 & 1 & 2 & 3 \\
1 & 2 & 3 & 4 & 0 \\
3 & 4 & 0 & 1 & 2 \\
\end{pmatrix}
+\begin{pmatrix}
0 & 1 & 2 & 3 & 4 \\
2 & 3 & 4 & 0 & 1 \\
4 & 0 & 1 & 2 & 3 \\
1 & 2 & 3 & 4 & 0 \\
3 & 4 & 0 & 1 & 2 \\
\end{pmatrix}^t
=
\begin{pmatrix}
0 & 5 & 10 & 15 & 20 \\
10 & 15 & 20 & 0 & 5 \\
20 & 0 & 5 & 10 & 15 \\
5 & 10 & 15 & 20 & 0 \\
15 & 20 & 0 & 5 & 10 \\
\end{pmatrix}
+\begin{pmatrix}
0 & 2 & 4 & 1 & 3 \\
1 & 3 & 0 & 2 & 4 \\
2 & 4 & 1 & 3 & 0 \\
3 & 0 & 2 & 4 & 1 \\
4 & 1 & 3 & 0 & 2 \\
\end{pmatrix}
=
\begin{pmatrix}
0 & 7 & 14 & 16 & 23 \\
11 & 18 & 20 & 2 & 9 \\
22 & 4 & 6 & 13 & 15 \\
8 & 10 & 17 & 24 & 1 \\
19 & 21 & 3 & 5 & 7 \\
\end{pmatrix}
\equiv
\begin{pmatrix}
1 & 8 & 15 & 17 & 24 \\
12 & 19 & 21 & 3 & 10 \\
23 & 5 & 7 & 14 & 16 \\
9 & 11 & 18 & 25 & 2 \\
20 & 22 & 4 & 6 & 8 \\
\end{pmatrix}
\end{align*}
\begin{align*}
5\begin{pmatrix}
4 & 0 & 3 & 1 & 2 \\
1 & 2 & 0 & 3 & 4 \\
2 & 3 & 1 & 4 & 0 \\
3 & 4 & 2 & 0 & 1 \\
0 & 1 & 4 & 2 & 3 \\
\end{pmatrix}
+\begin{pmatrix}
4 & 0 & 3 & 1 & 2 \\
1 & 2 & 0 & 3 & 4 \\
2 & 3 & 1 & 4 & 0 \\
3 & 4 & 2 & 0 & 1 \\
0 & 1 & 4 & 2 & 3 \\
\end{pmatrix}^m
\equiv
\begin{pmatrix}
23 & 2 & 19 & 6 & 15 \\
10 & 14 & 1 & 18 & 22 \\
11 & 20 & 7 & 24 & 3 \\
17 & 21 & 13 & 5 & 9 \\
4 & 8 & 25 & 12 & 16 \\
\end{pmatrix}
\end{align*}
\begin{align*}
5\begin{pmatrix}
4 & 0 & 3 & 1 & 2 \\
1 & 2 & 0 & 3 & 4 \\
2 & 3 & 1 & 4 & 0 \\
3 & 4 & 2 & 0 & 1 \\
0 & 1 & 4 & 2 & 3 \\
\end{pmatrix}
+\begin{pmatrix}
4 & 0 & 3 & 1 & 2 \\
1 & 2 & 0 & 3 & 4 \\
2 & 3 & 1 & 4 & 0 \\
3 & 4 & 2 & 0 & 1 \\
0 & 1 & 4 & 2 & 3 \\
\end{pmatrix}^t
\equiv
\begin{pmatrix}
25 & 2 & 18 & 9 & 11 \\
6 & 13 & 4 & 20 & 22 \\
14 & 16 & 7 & 23 & 5 \\
17 & 24 & 15 & 1 & 8 \\
3 & 10 & 21 & 12 & 19 \\
\end{pmatrix}
\end{align*}
--- --- ---
\begin{align*}
6\begin{pmatrix}
5 & 5 & 0 & 0 & 0 & 5 \\
1 & 4 & 4 & 1 & 4 & 1 \\
3 & 2 & 3 & 3 & 2 & 2 \\
2 & 3 & 2 & 2 & 3 & 3 \\
4 & 1 & 1 & 4 & 1 & 4 \\
0 & 0 & 5 & 5 & 5 & 0 \\
\end{pmatrix}
+\begin{pmatrix}
5 & 5 & 0 & 0 & 0 & 5 \\
1 & 4 & 4 & 1 & 4 & 1 \\
3 & 2 & 3 & 3 & 2 & 2 \\
2 & 3 & 2 & 2 & 3 & 3 \\
4 & 1 & 1 & 4 & 1 & 4 \\
0 & 0 & 5 & 5 & 5 & 0 \\
\end{pmatrix}^t
=
\begin{pmatrix}
30 & 30 & 0 & 0 & 0 & 30 \\
6 & 24 & 24 & 6 & 24 & 6 \\
18 & 12 & 18 & 18 & 12 & 12 \\
12 & 18 & 12 & 12 & 18 & 18 \\
24 & 6 & 6 & 24 & 6 & 24 \\
0 & 0 & 30 & 30 & 30 & 0 \\
\end{pmatrix}
+\begin{pmatrix}
5 & 1 & 3 & 2 & 4 & 0 \\
5 & 4 & 2 & 3 & 1 & 0 \\
0 & 4 & 3 & 2 & 1 & 5 \\
0 & 1 & 3 & 2 & 4 & 5 \\
0 & 4 & 2 & 3 & 1 & 5 \\
5 & 1 & 2 & 3 & 4 & 0 \\
\end{pmatrix}
=
\begin{pmatrix}
35 & 31 & 3 & 2 & 4 & 30 \\
11 & 28 & 26 & 9 & 25 & 6 \\
18 & 16 & 21 & 20 & 13 & 17 \\
12 & 19 & 15 & 14 & 22 & 23 \\
24 & 10 & 8 & 27 & 7 & 29 \\
5 & 1 & 32 & 33 & 34 & 0 \\
\end{pmatrix}
\equiv
\begin{pmatrix}
36 & 32 & 4 & 3 & 5 & 31 \\
12 & 29 & 27 & 10 & 26 & 7 \\
19 & 17 & 22 & 21 & 14 & 18 \\
13 & 20 & 16 & 15 & 23 & 24 \\
25 & 11 & 9 & 28 & 8 & 30 \\
6 & 2 & 33 & 34 & 35 & 1 \\
\end{pmatrix}
\end{align*}
m:mirrar transform
t:transpose transfrom
The mathmatican Euler seems to have thought a lot about magic square,
But I have no knowlage of them.
How to make magic squares here is my own idea.
If you use this way on the Excel, You can get many magic square.
It is up to the professinal mathematician to investigate in detal.
by Yoji Hitomi