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A short survey on quantum error correction (QEC) except for the recent fashion
such as so-called surface-code is presented. Most of the standard QEC theory
developed in the last twenty years have features of the process of error syndrome
measurements with use of subsidiary ancilla qubits and non-unitary correcting
process. Recently, we re-discovered a unitary error correction without error
syndrome detection scheme.1,2 Though this method is found in the earlier
works on QEC,3,4 it has not been referred in most of the textbooks on QEC.5–8

Of course, if this unitary QEC system can actually be implemented with simple
physical circuits, this must be advantageous for the usual syndrome detecting
method. Its usefulness is shown by applying it to a fully correlated error.
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1. Classical Error Correction (CEC)

The bit-flip error (0 ↔ 1) on a classical bit is corrected by encoding it
together with some redundant ancilla bits and decoding the error code
based on the majority principle. Assuming the bit-flip error occurs with
a small probability p on at most only one bit in the encoded assembly of
the data bit and the ancilla bits, a codeword composed with three bits is
sufficient to correct it. An example of the simplest codeword to realize this
correction process is given as follows:

data-bit encode error-code majority-rule decode
0 → 000 → {100, 010, 001} → 000 → 0
1 → 111 → {011, 101, 110} → 111 → 1

Thus it is clear that three-bit encoding is enough so that the sets of error
codes originated from the initial data bit 0 or 1 are completely separated
and can be corrected with accuracy of O(p2) by using the majority rule.
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Fig. 1. (a)An image5 of the Hamming distance (=3) of the 3-bit encoding system for
the bit-flip error, where Xi denotes the bit-flip error on the i-th bit. (b)Two-bit encoding
does not have a sufficient distance for the error codes to be separated.

It can be shown that an n-bit codeword is sufficient for k data bits to be
corrected, where n must satisfy the condition 2n ≥ 2k(n + 1). Here, 2k is
the number of independent binary states of k classical bits and n + 1 is
the number of distinguishable errors including ‘no-error’. Generally if the
error occurs on at most m bits, we need 2n ≥ 2k

∑m
i=0 iCn. For example,

we need n = 2m+ 1 to correct one data bit (k = 1) by using the majority
rule. The minimal condition for the correctable codeword is expressed by
the Hamming distance (Fig.1).

2. Quantum Error Correction (QEC)

The principle of conventional QEC is almost the same as that of CEC, if we
interpret the classical bit 0 or 1 as the qubit state |0〉 or |1〉, respectively,
except for the following facts:

1) A superposed input data of |0〉 and |1〉 is acceptable in QEC.
2) Then, any observation destroying the superposed state is not per-

mitted in encoding and decoding (or correcting) processes.
3) There is a phase-flip error peculiar to the quantum system in ad-

dition to the bit-flip error.

2.1. Quantum bit-flip error

The quantum bit-flip operation is defined by

X |0〉 = |1〉 and X |1〉 = |0〉,
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that is, the NOT operation described by a Pauli matrix,

σx =
(

0 1
1 0

)
.

Let us denote this bit-flip operator acting on the i-th qubit by Xi. For
example,

X1 = X ⊗ I ⊗ I, X2 = I ⊗X ⊗ I, X3 = I ⊗ I ⊗X,

for the three qubit system, where I is the 2-dimensional identity matrix I2.
The Hamming distance is just the same as that in CEC, i.e. we need

three qubits for the bit-flip error correction of one data-qubit. The encoding
process is given by

|0〉 → |000〉 and |1〉 → |111〉. (1)

The encoded pair are called the logical qubits and denoted as

|0〉L = |000〉 and |1〉L = |111〉, (2)

supposing that a error correctable quantum logical circuits is constructed
with them.

In QEC we have to encode without observing the input state |0〉 or |1〉,
so that a superposed state such as |ψ〉 = α|0〉+β|1〉 (α, β ∈ C) is acceptable
as an input state, i.e.

|ψ〉 ⊗ |00〉 = α|000〉 + β|100〉 → |Ψ〉 = α|000〉+ β|111〉. (3)

Note that the encoded state is entangled. This encoding process is performed
by a unitary operation without any observation in QEC,7 i.e. two controlled-
NOT (CNOT) gates shown in Fig.2.

The encoding operation UE(=CNOTNOT gate) is clear, if it is under-
stood after the classical meaning, i.e. ‘If the input state is |1〉, reverse the

Fig. 2. Unitary encoding operation UE without observation. The small filled circle de-
notes the controlled qubit, i.e. ‘if |1〉’, and the large open circle the NOT operation X
on the corresponding qubits.
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ancillary qubits state |00〉 to |11〉’. In the quantum circuit this logical pro-
cess is performed without any observation, i.e. as a unitary transformation,⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α

0
0
0
β

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α

0
0
0
0
0
0
β

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4)

That is, the encoding gate is a generator of the logical qubits of Eq.(2). The
column vectors of its matrix form except for the first and fifth are arbitrary,
at least if the matrix itself is unitary.

Each bit-flip error Xi is a unitary operation acting on the encoded state
|Ψ〉 as Xi|Ψ〉 = |Ψ′〉 including the no-error case X0 = I8. The output state
|Ψ′〉 is given by

|Ψ′〉 =

⎧⎪⎪⎨
⎪⎪⎩
α|000〉 + β|111〉 for X0 (no error),
α|100〉 + β|011〉 for X1,

α|010〉 + β|101〉 for X2,

α|001〉 + β|110〉 for X3.

(5)

However, which error occurred, if any, is unknown. That is, the error channel
is described as a stochastic process with probability {pi} and its output is
a mixed state in general. Error correction is performed by detecting the

Fig. 3. A standard bit-flip error correction process with detecting the error states.7 The
correction process may be replaced by a physical measurement of the ancilla states and
surgery on the above three qubits referring the measured value.



January 8, 2012 12:27 WSPC - Proceedings Trim Size: 9in x 6in tomita

5

output state |Ψ′〉 with the use of subsidiary ancilla qubits for readout as is
shown in Fig.3. The error syndrome of the subsidiary ancilla states shown
by |∗ ∗〉 in Fig.3 after readout of |Ψ′〉 is given by

|00〉 for α|000〉+ β|111〉 (no error),
|11〉 for α|100〉 + β|011〉,
|10〉 for α|010〉 + β|101〉,
|01〉 for α|001〉 + β|110〉,

(6)

respectively. The state of the subsidiary ancillae can be any one of these four
with some probability, and not a superposed state. Note that this readout
process itself never spoils the superposition brought by the input state |ψ〉.

Now let us introduce a unitary correction without detecting the error
syndrome. First, if we operate the decoding operator, i.e. the inverse of
the encoding operator UE(=CNOTNOT), on the error state |Ψ′〉 given by
Eq.(5), it can be easily found that

|Ψ′〉 =

⎧⎪⎪⎨
⎪⎪⎩
α|000〉 + β|111〉 → α|000〉+ β|100〉,
α|100〉 + β|011〉 → α|111〉+ β|011〉,
α|010〉 + β|101〉 → α|010〉+ β|110〉,
α|001〉 + β|110〉 → α|001〉+ β|101〉.

(7)

Note that the decoded states have no entanglement now, though the first
qubit is reversed in the second line (the case ofX1-error) yet. This mismatch
can be corrected by a NOT-controlled-controlled gate, i.e. ‘Flip the first
qubit, only if the second and the third qubit state is |11〉’. This operation is
performed by a CCNOT gate (Fig.4), a kind of the so-called Toffoli gate.

Fig. 4. A unitary error correction without detecting the error syndrome. If we need the
complete initial states, we may use the subsidiary ancillae to reset the encoding ancillae
by swapping. Then we obtain the same final state as Fig.3.
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After this CCNOT operation we find,

|Ψ′〉 → |ψ〉 ⊗ |∗ ∗〉. (8)

The data qubit has been recovered in all cases. The ancilla state |∗ ∗〉 rep-
resents the error syndrome depending on where the bit-flip error occurred
(or did not occur), which was detected by using the subsidiary ancilla in
the previous method. Some non-unitary process is necessary to recover it to
the initial state. However, we need not to know it at least for the purpose of
error correction of the data qubit, because Eq.(8) has a direct product form
and the data qubit state can be extracted safely discarding the ancilla. a

The advantages of the unitary correction become clearer if we use the
operator QEC formulation.1,2 In this formulation the initial and the en-
coded states are given by density operators,

ρ0 = |ψ〉〈ψ| ⊗ |00〉〈00|, ( |ψ〉 = α|0〉 + β|1〉 ), (9)

and

ρ = UEρ0U
−1
E = (α|000〉 + β|111〉)(α∗〈000|+ β∗〈111|), (10)

respectively. Note that both are pure states and the latter is entangled. The
stochastic noisy error channel is defined by a superoperator form,

ρ′ =
3∑

i=0

pi(XiρXi), (11)

where X0(= I) denotes ‘no error’ and p0 = 1 −∑3
i=1 pi, if we assume the

bit-flip error occurs on at most only one qubit. Thus the error state is a
mixed state in general. Let us denote the recovery operator composed with
a CNOTNOT gate and a CCNOT gate by UR. Then the corrected state is
given by a tensor product form,

ρ̃ = URρ
′U−1

R = |ψ〉〈ψ| ⊗ ρ′a, (12)

where
ρ′a = p0|00〉〈00|+ p1|11〉〈11|+ p2|10〉〈10|+ p3|01〉〈01|

=

⎛
⎜⎜⎝
p0 0 0 0
0 p3 0 0
0 0 p2 0
0 0 0 p1

⎞
⎟⎟⎠ .

(13)

aIf we want to recover the complete initial state including the encoding ancilla, we may
use the two subsidiary ancilla set |00〉 to reset the encoding ancilla as is shown in the
right-half part of Fig.4, and encode it again if the encoded state |Ψ〉 is wanted.
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Extracting the data qubit state means merely computing the partial trace
over the ancilla states using Trρ′a = 1 in this formulation. The process of
partial trace is a kind of projection and is non-unitary.

2.2. Phase-flip error

There are other types of error on the qubit, i.e. the phase-flip error and the
bit-and-phase-flip error. These operations are defined by

Z|0〉 = |0〉, Z|1〉 = −|1〉 and Y |0〉 = |1〉, Y |1〉 = −|0〉.

They are also described by Pauli matrices as

Z = σz =
(

1 0
0 −1

)
and Y = −iσy =

(
0 −1
1 0

)
,

respectively. Note that Y = XZ. The notations {Zi} and {Yi} are used in
the same meaning as {Xi}.

In the case of the phase-flip errors only, the process of encoding and
correction is almost the same as that for the bit-flip case, if one uses the
Hadamard transformations, HZH = X (and HYH = −Y ), where H is
the Hadamard operator given by

H =
1√
2

(
1 1
1 −1

)
.

Application of this fact to the general case of (X,Y, Z)-error is straight-
forward in Shor’s nine-qubit QEC.9 The details are skipped and shown in
Fig.6 only. After the bit-flip correction the entanglement within each three
qubit group is coming untied and a direct product state |Ψ147〉⊗|∗∗∗∗∗∗〉 is
resulted, where |Ψ147〉 is an entangled state of the 1st, 4th and 7th qubits.

Fig. 5. The phase-flip error correction.3
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Fig. 6. The unitary version1 of Shor’s 9-qubit QEC for the general (X, Y, Z)-error. The
notation W denotes one of the X, Y and Z operations. We assume again an error occurs
on at most one of nine qubits. The encoded state |Ψ1∼9〉 is an entangled state over all

nine qubits and |Ψ147〉 is that over the 1st,4th and 7th qubits.

2.3. The method of stabilizer

The sufficient Hamming distance is realized with n = 5 for the general
(X,Y, Z)-error, because 2n ≥ 2k(3n+ 1) gives n ≥ 5 for k = 1, where 3n is
the number of distinguishable errors in this case. However, how to encode
the logical qubits is not so trivial compared with the bit-flip error. We have
a powerful tool, the so called stabilizer method applicable for this purpose.

Let {Wk} be the set of error operators concerned in a given qubit system.
A set of commutative operators {Sj} satisfying the following properties is
called a stabilizer set for QEC:

1. Each Sj satisfies S2
j = I, i.e. its eigenvalues are ±1.

2. Each Wk is either commutative or anti-commutative with all {Sj},
and anti-commutative with at least one member Sj . And {Wk} can
be discriminated from one another by this commutativity relations.

3. All {Sj} have simultaneous eigenstate(s) with eigenvalue +1.

The property 3 corresponds to the logical qubit(s), i.e. the equations

Sj |0〉L = |0〉L, Sj|1〉L = |1〉L, ...., (14)

for all Sj characterize the set of logical qubits. From this property the
operator set composed of {Sj} is called a stabilizer set and used as an
equivalent substitute for the set of states of the logical qubits.



January 8, 2012 12:27 WSPC - Proceedings Trim Size: 9in x 6in tomita

9

Fig. 7. Five qubit QEC using a stabilizer. The encoding operator UE may be composed
by using the stabilizer set so that the corresponding logical qubits are created.

If Wk is anti-commutative with Sj , we have

SjWk|0〉L = −WkSj |0〉L = −Wk|0〉L, (15)

and the same relation for |1〉L. Then the error state Wk(α|0〉L +β|1〉L) is an
eigenstate of Sj with eigenvalue −1. To the contrary if commutative, the
eigenvalue is +1. Thus all error states can be discriminated from each other
according to the pattern of the eigenvalue set {±1,±1, ...} of the stabilizers
and the sufficient Hamming distance is realized automatically.

To ascertain the effect of the stabilizer let us consider the 3-qubit bit-
flip QEC, i.e. {Wk} = {X1, X2, X3}. The stabilizer set is not unique. An
example of the commutative set is given by {Sj} = {Z1Z2, Z1Z3}, which
have the simultaneous eigenstates {|000〉, |111〉} with eigenvalue +1. Note
that the commutativity +(−) in Table.1 is used for ‘commutative’ (‘anti-
commutative’) to keep consistency with the sign of the eigenvalues.

(Commutativity) (Eigenvalues)
error Z1Z2 Z1Z3

I⊗3 + +
X3 + −
X2 − +
X1 − −

error states Z1Z2 Z1Z3

|000〉, |111〉 +1 +1
|001〉, |110〉 +1 −1
|010〉, |101〉 −1 +1
|100〉, |011〉 −1 −1

Table. 1. The characteristics of the stabilizer set for 3-qubit bit-flip QEC.
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An example of commutative set for the five qubit QEC of the general
(X,Y, Z)-error is given by10

S1 = iY ⊗ Z ⊗ I ⊗ Z ⊗ iY,

S2 = X ⊗ Z ⊗ Z ⊗X ⊗ I,

S3 = iY ⊗ iY ⊗ Z ⊗ I ⊗ Z,

S4 = X ⊗ I ⊗X ⊗ Z ⊗ Z.

(16)

Apparently these are commutative and each of fifteen error operators {Wk}
= {X1∼5, Y1∼5, Z1∼5} has a different pattern of commutativity with {Sj}.

By using relations Sj(I + Sj) = I + Sj (I = I⊗5, hereafter) it can be
easily shown that

|0〉L =
1√
8
(I + S1)(I + S2)(I + S3)(I + S4)|00000〉, (17)

and

|1〉L =
1√
8
(I + S1)(I + S2)(I + S3)(I + S4)|11111〉, (18)

are the simultaneous eigenstates of {Sj} with eigenvalue +1, and are or-
thogonal to each other, because the number of 1’s in each binary basis
of |0〉L is even while that in |1〉L is odd. (Indeed it can be shown that
|1〉L = X1X2X3X4X5|0〉L.) Note that

S1S2S3S4 = I2 ⊗ Y ⊗X ⊗X ⊗ Y,

and

S1S2S3S4|10000〉 = |11111〉.
Then the encoded state is given by

1√
8
(I + S1)(I + S2)(I + S3)(I + S4)|ψ〉 ⊗ |0000〉 = α|0〉L + β|1〉L, (19)

where |ψ〉 = α|0〉 + β|1〉. The operator in the left side of this equation is
non-unitary, because I + Sj has an eigenvalue 0 (and 2).

The encoding operation is constructed by using Eq.(19) and the follow-
ing tricky identities. Let U be an arbitrary unitary operator in U(24) and
|φ〉 an arbitrary state of 4-qubits. Then one finds a unitary expression,

1√
2
(I +X ⊗ U)(|0〉 ⊗ |φ〉) =

1√
2
(|0〉 ⊗ |φ〉 + |1〉 ⊗ U |φ〉),

= C-U
(

1√
2
(|0〉 + |1〉) ⊗ |φ〉

)
= C-U(H ⊗ I)(|0〉 ⊗ |φ〉), (20)
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Fig. 8. The encoding operator UE for the five qubit QEC using the stabilizer set defined
by Eq.(16). The Z-gate marked * can be neglected in encoding, but is to be included
in U−1

E in decoding. The order of the stabilizer gates is changed from the original one
reprinted in Ref.8 to make the encoding/correcting circuits as simple as possible.

and just the same expression for Y , where C-U denotes the controlled-U
operator and the relations,

H |0〉 =
1√
2
(|0〉 + |1〉) and H |1〉 =

1√
2
(|0〉 − |1〉), (21)

are used.

The detection of the eigenvalues of {Sj} with respect to the error state,
i.e. an eigenstate, |Ψ′〉 = Wk(α|0〉L + β|1〉L) can be implemented as shown
in Fig.9 with a subsidiary ancilla for each Sj by using the relation,

C-Sj

(
1√
2
(|0〉 + |1〉) ⊗ |Ψ′〉

)
=

1√
2
(|0〉 ⊗ |Ψ′〉 + |1〉 ⊗ Sj |Ψ′〉)

=
1√
2
(|0〉 + λj |1〉) ⊗ |Ψ′〉, (22)

where λj(= ±1) is the eigenvalue of Sj , i.e. Sj |Ψ′〉 = λj |Ψ′〉.

Fig. 9. Detection of the eigenvalue of Sj . The eigenvalue ±1 is given by the measurement
Mj (= 0 or 1) by applying the inverse relations of Eq.(21) with H−1 = H to Eq.(22).
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Fig. 10. The unitary error correction corresponding to Fig.8.

We can also construct a unitary error correction without detecting the
error syndrome in this example. First, decode the error state with U−1

E .
Then we find a direct product form released from entanglement,4

U−1
E |Ψ′〉 = |ψ′〉 ⊗ |∗ ∗ ∗ ∗〉, (23)

where |∗ ∗ ∗ ∗〉 denotes the syndrome of the four ancilla qubits. The data
qubit state |ψ′〉 has one of the four patterns,

α|0〉 + β|1〉, α|0〉 − β|1〉, α|1〉 + β|0〉, α|1〉 − β|0〉.
This mismatch (except for the first one) can be corrected to a desired form
|ψ〉 ⊗ |∗ ∗ ∗ ∗〉 by a Toffoli gate having four controlled qubits, e.g.

‘Operate Z on the first qubit, if the syndrome is ∗ ∗ ∗ ∗’
for the second pattern, and so on. The fifteen Toffoli gates corresponding
to the probable error states caused by each of the fifteen operators {Wk} =
{X1∼5, Y1∼5, Z1∼5} can be reduced to a more compact form as is shown in
Fig.10 with use of some Boolean algebra. (See Fig.11.)

(Conjecture) We find an entanglement-free, direct product form Eq.(23)
in general after decoding with U−1

E , at least if

all θ =
nπ

2
, (n = 0,±1,±2, ...),

when UE is decomposed into a standard form of a matrix product of CNOTs
and one-qubit-gates (=local rotations) such as exp[(iθ/2)V ], where V is one
of the unitary operators {Xj , iYj, Zj}. Note that the Hadamard gate H in
Fig.8 is decomposed as H = i exp[(−iπ/2)σz] exp[(iπ/4)σy], and has an
acceptable form of this conjecture.



January 8, 2012 12:27 WSPC - Proceedings Trim Size: 9in x 6in tomita

13

Fig. 11. An example of Boolean relations used to contract the Toffoli gates into a
compact circuit shown in Fig.10. The open circle denotes ‘If 0’ (=If false).

2.4. Collective error

So far we have considered quantum errors which act on each qubit inde-
pendently and have assumed that an error occurs on at most one qubit
only. However, the error caused by noises of an external electro-magnetic
wave has very long range compared to the quantum devices, e.g. molecules
or nano-devices. In this case an error operator acts on several qubits in
a given microscopic system simultaneously. Let us call this type of error
caused by a longwave noise a collective error or a correlated error.11

A simple example is a fully correlated (X,Y, Z)-error. In this case we
have three kinds of error {X⊗n, Y ⊗n, Z⊗n} for a n-qubit system. By anal-
ogy with the bit-flip error n = 3 qubit encoding is sufficient to discriminate
the error states and to recover one data qubit. b Empirically we found sev-
eral candidates of encoding/correcting operations. One of the simplest is
shown in Fig.12. Note that the encoded state has no entanglement11 in this
case. By encoding with H and decoding the error state with UR we find

|ψ〉 ⊗ |00〉 −→ |ψ〉 ⊗ | ∗ ∗〉. (24)

Note that the error caused by an arbitrarily repeated errors of X⊗3,
Y ⊗3 and Z⊗3 with arbitrary probabilities can be exactly corrected in this
model because we have the relationsXZ = Y , etc. This fact means that the
initial state of two ancilla qubits is arbitrary, though the encoding operator
should be modified to the inverse of the recovery operator UR defined in
Fig.12. c The ancilla qubits can be reused without resetting the syndrome,
i.e. any longwave noise of this type does not practically cause any error in

bJust after the Symposium we have found that by using 2m + 1 qubit encoding we can
recover 2m data qubits for this type error.12

cIn general one may define the encoding operator by UE = U−1
R . However, two controlled

gates in UR can be omitted in encoding, when the ancilla state is |00〉. This is applicable
to all examples introduced in this talk.
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Fig. 12. The QEC for the fully correlated error. The notation W denotes X, Y or Z.

the system.
This situation becomes clearer if we describe the encoding/correcting

processes in the density operator form as

|ψ〉〈ψ| ⊗ ρa −→ |ψ〉〈ψ| ⊗ ρ′a, (25)

where ρa and ρ′a are the initial and the final density matrices of the ancilla
qubits. If we prepare a completely mixed state as the initial ancilla state,
i.e. ρa = Diag[ 1/4, 1/4, 1/4, 1/4 ], we find ρ′a = ρa. Thus the present unitary
QEC system for this specialized error gives us a closed, error-free system.

The model is extended to a more general collective noise V ⊗n, ∀V ∈
U(2).13 Note that generator of such an error is written as

(eiaσξ )⊗n = exp

(
ia

n∑
k=1

σ
(k)
ξ

)
, (a ∈ R)

where ξ = x, z and σ(k)
ξ denotes the Pauli operator acting on the k-th qubit.

Let us introduce a total angular momentum defined by

L =
1
2

n∑
k=1

σ(k).

There are Kn = nCm − nCm−1 eigenstates of L = 1/2 for odd n = 2m+ 1.
The set of the eigenvector pairs {(ei0, ei1), i = 1, 2, ...,Kn} of Lz = ±1/2
serves as a set of logical qubits for this QEC, because we have the relations

(Σzei0 = ei0, Σzei1 = −ei1) and (Σxei0 = ei1, Σxei1 = ei0), (26)

for the L = 1/2 eigenstates, where Σ = 2L is used to compare to n = 1.
For simplicity we restrict the following discussions to n = 3. Let

(ea0, ea1), (eb0, eb1) be the two eigenvector pairs and construct a unitary
matrix as

UE = (ea0, ea1, ∗, ∗, eb0, eb1, ∗, ∗). (27)
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where the irrelevant vectors shown by ∗ are chosen so as to make UE unitary,
e.g. may be chosen to be the four eigenvectors for L = 3/2. By encoding
with UE and decoding the error state with UR = U−1

E , one finds that

|ψ〉〈ψ| ⊗ |0〉〈0| ⊗ |v〉〈v| −→ |ψ〉〈ψ| ⊗ |0〉〈0| ⊗ |v′〉〈v′|,
where |v′〉 = V |v〉 with the error operator V ⊗3. In this case the initial state
of only one of two ancilla qubits is arbitrary as shown by |v〉. Thus the error
caused by the general longwave noise is limited within the ancilla qubits
again.

3. Summary

Conventional theories on QEC are surveyed, emphasizing the usefulness of
the unitary correction especially in the operator QEC. The unitary method
needs no subsidiary ancilla qubits to detect the error syndrome in the re-
covery process. This is the most advantageous point, especially, for experi-
mental realization of QEC.14
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