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We investigate an efficient quantum error correction of a fully correlated noise. Suppose the noise is
characterized by a quantum channel whose error operators take fully correlated forms given by σ⊗n

x ,
σ⊗n

y and σ⊗n
z , where n > 2 is the number of qubits encoding the codeword. It is proved that (i) n qubits

codeword encodes (n − 1) data qubits when n is odd and (ii) n qubits codeword implements an error-
free encoding, which encode (n − 2) data qubits when n is even. Quantum circuits implementing these
schemes are constructed.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In quantum information processing, information is stored and
processed with a quantum system. A quantum system is always
in contact with its surrounding environment, which leads to deco-
herence in the quantum system. Decoherence must be suppressed
for quantum information stored in qubits to be intact. There are
several proposals to fight against decoherence. Quantum error cor-
rection, abbreviated as QEC hereafter, is one of the most promising
candidate to suppress environmental noise, which leads to de-
coherence [1]. By adding extra ancillary qubits, in analogy with
classical error correction, it is possible to encode a data qubit to
an n-qubit codeword in such a way that an error which acted
in the error quantum channel is identified by measuring another
set of ancillary qubits added for error syndrome readout. Then
the correct codeword is recovered from a codeword suffering from
a possible error by applying a recovery operation, whose explicit
form is determined by the error syndrome readout.

In contrast with the conventional scheme outlined in the pre-
vious paragraph, there is a scheme in which neither syndrome
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readouts nor syndrome readout ancilla qubits are required [2–5].
In particular, in [4,5], a general efficient scheme was proposed.
A data qubit is encoded with encoding ancilla qubits by the same
encoding circuit as the conventional one, after which a noisy chan-
nel is applied on the codeword. Subsequently, the inverse of the
encoding circuit is applied on a codeword, which possibly suffers
from an error. The resulting state is a tensor product of the data
qubit state with a possible error and the ancilla qubit state. It is
possible to correct erroneous data qubit state by applying correc-
tion gates with the ancilla qubits as control qubits and the data
qubit as a target qubit.

This Letter presents two examples of error correcting codes
falling in the second category. The noisy quantum channel is as-
sumed to be fully correlated, which means all the qubits constitut-
ing the codeword are subject to the same error operators. In most
physical realizations of a quantum computer, the system size is
typically on the order of a few micrometers or less, while the en-
vironmental noise, such as electromagnetic wave, has a wavelength
on the order of a few millimeters or centimeters. Then it is natu-
ral to assume all the qubits in the register suffer from the same
error operator. To demonstrate the advantage of the second cate-
gory, we restrict ourselves within the noise operators Xn = σ⊗n

x ,
Yn = σ⊗n

y , Zn = σ⊗n
z in the following, where n > 2 is the num-

ber of constituent qubits in the codeword. We show that there
exists an n-qubit encoding which accommodates an (n − 1)-qubit
data state if n is odd and an (n − 2)-qubit data state if n is even.
Although the channel is somewhat artificial as an error channel,
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we may apply our error correction scheme in the following situa-
tion. Suppose Alice wants to send qubits to Bob. Their qubit bases
differ by unitary operations Xn , Yn or Zn . Even when they do not
know which basis the other party employs, Alice can correctly send
qubits by adding one extra qubit (when n is odd) or two extra
qubits (when n is even).

Recently, the violation of the quantum Hamming bound due to
code degeneracy was discussed in the case of arbitrarily correlated
noise and the concept of the packing distance has been intro-
duced [6]. In the present Letter, the packing distance is exactly
derived for the fully correlated noise by using rank-k numerical
range analysis. We state the theorems and prove them in the next
section. The last section is devoted to summary and discussions.

2. Main theorems

In the following, σi denotes the ith component of the Pauli ma-
trices and we take the basis vectors

|0〉 =
(

1

0

)
and |1〉 =

(
0

1

)

so that σz is diagonalized. We introduce operators Xn , Yn and Zn

acting on the n-qubit space C2n = ⊗n
i=1 C2, where n > 2 as men-

tioned before.
Let A1, A2, A3 be m × m complex matrices, and let k ∈

{1, . . . ,m−1}. Denote by Λk(A1, A2, A3) the (joint) rank-k numeri-
cal range of (A1, A2, A3), which is the collection of (a1,a2,a3) ∈ C3

such that P A j P = a j P for some m × m rank-k orthogonal projec-
tion P [7–9]. A quantum channel of the form

Φ(ρ) = p0ρ + p1 Xnρ X†
n + p2YnρY †

n + p3 Znρ Z †
n

with p0, p1, p2, p3 > 0,

3∑
i=0

pi = 1, (1)

has a k-dimensional quantum error correcting code (QECC) if and
only if Λk(Xn, Yn, Zn) �= ∅. To prove this statement, we need to
recall the Knill–Laflamme correctability condition, which asserts
that given a quantum channel Φ : Mn → Mn with error operators
{Fi}1�i�r , V is a QECC of Φ if and only if P F †

i F j P = μi j P , where
P ∈ Mn is the projection operator with the range space V [10]. It
should be clear that Λk({F †

i F j}1�i, j�r) �= ∅ if and only if there is
a QECC with dimension k. Now it follows from X2

n = Y 2
n = Z 2

n = I
and the relations

XnYn = in Zn, Yn Zn = in Xn, Zn Xn = inYn

that the channel (1) has a k-dimensional QECC if and only if

Λk(Xn, Yn, Zn, I) �= ∅.

By noting that P I P = 1 · P irrespective of rank P , we find
Λk(Xn, Yn, Zn) �= ∅ if and only if Λk(Xn, Yn, Zn, I) �= ∅.

Theorem 2.1. Suppose n > 2 is odd. Then Λ2n−1(Xn, Yn, Zn) �= ∅.

Proof. Our proof is constructive. For j1, . . . , jn ∈ {0,1}, denote
| j1, . . . , jn〉 = ⊗n

i=1 | ji〉. Let

V = Span
{| j1, . . . , jn〉: the number of i with ji = 1 is even

}
.

Then dimV = ∑
r is even

(n
r

) = 1
2 ((1 + 1)n + (1 − 1)n) = 2n−1, where(n

r

)
is the number of r-combinations from n elements. Since

σx|0〉 = |1〉, σx|1〉 = |0〉, σy|0〉 = i|1〉,
σy|1〉 = −i|0〉, σz|0〉 = |0〉, σz|1〉 = −|1〉,

we have

Xn|v〉, Yn|v〉 ∈ V⊥ and Zn|v〉 = |v〉 for all |v〉 ∈ V.

Let P be the orthogonal projection onto V . Then the above ob-
servation shows that P Xn P = P Yn P = 0 and P Zn P = P . There-
fore, (0,0,1) ∈ Λ2n−1 (Xn, Yn, Zn), which shows that Λ2n−1 (Xn, Yn,

Zn) �= ∅ and hence V is shown to be a 2n−1-dimensional QECC. �
Now let us turn to the even n case. We first state a lemma

which is necessary to prove the theorem.

Lemma 2.2. Let A ∈ MN be a normal matrix. Then the rank-k numer-
ical range of A is the intersection of the convex hulls of any N − k + 1
eigenvalues of A.

The proof of the lemma is found in [9].

Theorem 2.3. Suppose n > 2 is even. Then Λ2n−2 (Xn, Yn, Zn) �= ∅ but
Λ2n−1 (Xn, Yn, Zn) = ∅.

Proof. Let n = 2m. By Theorem 2.1, Λ2n−2 (Xn−1, Yn−1, Zn−1) �= ∅.
Consider

V ′ = Span
{|0〉| j1, . . . , jn−1〉:

the number of i with ji = 1 is even
}
.

Observe that the projection P onto V ′ satisfies P Xn P = P Yn P = 0
and P Zn P = P and hence (0,0,1) ∈ Λ2n−2 (Xn, Yn, Zn), which
proves Λ2n−2(Xn, Yn, Zn) �= ∅.

Since {Xn, Yn, Zn} is a commuting family, Xn, Yn and Zn can be
diagonalized simultaneously. We may assume that

Xn = I2n−1 ⊕ (−I2n−1) and

Yn = I2n−2 ⊕ (−I2n−2) ⊕ I2n−2 ⊕ (−I2n−2). (2)

Since σxσy = iσz , we have

Zn = (−1)m XnYn

= (−1)m(
I2n−2 ⊕ (−I2n−2) ⊕ (−I2n−2) ⊕ I2n−2

)
. (3)

Let us show that Λ2n−1 (Xn, Yn) = {(0,0)}. We first note the
identity Λk(H, K ) = Λk(H + iK ) for Hermitian H , K . Let us re-
place H by Xn and K by Yn to obtain Λk(Xn, Yn) = Λk(Xn + iYn).
Since Xn and Yn commute, Xn + iYn is normal and Lemma 2.2 is
applicable. From Eqs. (2) and (3), we find Xn + iYn has eigenval-
ues 1 + i, 1 − i, −1 + i, −1 − i and each eigenvalue is 2n−2-fold
degenerate. By taking N = 2n and k = 2n−1 in Lemma 2.2, we find
the rank-2n−1 numerical range of Xn + iYn is the intersection of
the convex hulls of any 2n − 2n−1 + 1 = 2n−1 + 1 eigenvalues. Since
each eigenvalue has multiplicity 2n−2, each convex hull involves at
least three eigenvalues. By inspecting four eigenvalues plotted in
the complex plane, we easily find the intersection of all the convex
hulls is a single point (0,0), which proves Λ2n−1(Xn, Yn) = {(0,0)}.
Similarly, we prove Λ2n−1 (Yn, Zn) = {(0,0)}. From these equalities
we obtain

Λ2n−1(Xn, Yn, Zn) ⊆ {
(0,0,0)

}
.

Suppose Λ2n−1(Xn, Yn, Zn) �= ∅. Let P be a rank-2n−1 projection
such that P Xn P = P Yn P = P Zn P = 0. Let

P =
[

P11 P12

P †
12 P22

]

where each Pij has size 2n−1 × 2n−1. From P 2 = P and P Xn P = 0,
we have four independent equations
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P 2
11 + P12 P †

12 = P11, P 2
11 − P12 P †

12 = 0,

P 2
22 + P †

12 P12 = P22, P 2
22 − P †

12 P12 = 0.

Let P12 = U D V † be the singular value decomposition of P12,
where D is a nonnegative diagonal matrix and U , V ∈ U(2n−1).
Then the above equations are solved as

P11 = U DU †, P22 = V D V †, 2D2 = D.

By collecting these results, we find that the projection operator is
decomposed as

P =
[

U 0
0 V

][
D D
D D

][
U † 0
0 V †

]
.

Since rank P = 2n−1 and P 2 = P , it follows from 2D2 = D that

D = 1

2
I2n−1 . Let

A = U †(I2n−2 ⊕ (−I2n−2)
)
U and B = V †(I2n−2 ⊕ (−I2n−2)

)
V .

Then both A and B are non-singular. On the other hand, the
assumption P Yn P = P Zn P = 0 implies A + B = A − B = 0 and
hence A = B = 0, which is a contradiction. Therefore, Λ2n−1(Xn,

Yn, Zn) = ∅. �
In the following, we give an explicit construction of QECC for Φ

in Eq. (1) with odd n. The technique is based on Theorem 2.1 and
the results in [5]. Let W be a 2n × 2n−1 matrix with columns in
the set{| j1, . . . , jn〉: the number of i where ji = 1 is even

}
. (4)

Define the 2n × 2n matrix R = [ W Xn W ]. In our QEC, an
(n − 1)-qubit state ρ is encoded with one ancilla qubit |0〉 as
R(|0〉〈0|⊗ρ)R†. Then a noisy quantum channel Φ is applied on the
encoded state and subsequently the recovery operation R† is ap-
plied so that the decoded state automatically appears in the output
with no syndrome measurements. Our QEC is concisely summa-
rized as

R†Φ
(

R
(|0〉〈0| ⊗ ρ

)
R†)R = ρa ⊗ ρ for all ρ ∈ M2n−1 , (5)

where ρa = (p0 + p3)|0〉〈0| + (p1 + p2)|1〉〈1|.
Choosing an encoding matrix amounts to assigning the last

2n−1 columns of R so that of R is unitary. Therefore there are
large degrees of freedom in the choice of encoding. In the fol-
lowing examples, we have chosen encoding whose quantum cir-
cuit can be implemented with the least number of CNOT gates.
Since our decoding circuit is the inverse of the encoding cir-
cuit, it is also implemented with the least number of CNOT
gates.

When n = 3, the unitary operation R can be chosen as

R = |000〉〈000| + |011〉〈001| + |110〉〈010| + |101〉〈011|
+ |111〉〈100| + |100〉〈101| + |001〉〈110| + |010〉〈111|.

When n = 5, R can be chosen as

R = |00000〉〈00000| + |00011〉〈00001| + |00110〉〈00010|
+ |00101〉〈00011| + |01100〉〈00100| + |01111〉〈00101|
+ |01010〉〈00110| + |01001〉〈00111| + |11000〉〈01000|
+ |11011〉〈01001| + |11110〉〈01010| + |11101〉〈01011|
+ |10100〉〈01100| + |10111〉〈01101| + |10010〉〈01110|
+ |10001〉〈01111| + |11111〉〈10000| + |11100〉〈10001|
+ |11001〉〈10010| + |11010〉〈10011| + |10011〉〈10100|

+ |10000〉〈10101| + |10101〉〈10110| + |10110〉〈10111|
+ |00111〉〈11000| + |00100〉〈11001| + |00001〉〈11010|
+ |00010〉〈11011| + |01011〉〈11100| + |01000〉〈11101|
+ |01101〉〈11110| + |01110〉〈11111|.

Fig. 1 shows quantum circuits of the matrix R for n = 3 and
n = 5. It follows from Eq. (5) that the recovery circuit is the inverse
of the encoding circuit. It seems, at first sight, that the implemen-
tations given in Fig. 1 contradict with Eq. (5) since the controlled
NOT gate in the end of the recovery circuit is missing in the encod-
ing circuit. Note, however, that the top qubit is set to |0〉 initially
and the controlled NOT gate is safely omitted without affecting en-
coding.

We construct a decoherence-free encoding when n is even as
follows. The codeword in this case is immune to the noise opera-
tors, which is an analogue of noiseless subspace/subsystem intro-
duced in [11,12]. Let |e〉 be an arbitrary element in a similar set as
Eq. (4) defined for even n. Then evidently a vector

1√
2

(|e〉 + Xn|e〉
)

is separately invariant under the action of Xn, Yn and Zn . There
are

1

2

∑
r=even

(
n

r

)
= 2n−2

orthogonal vectors of such form, e.g. we have four vectors,

1√
2

(|0000〉 + |1111〉), 1√
2

(|0011〉 + |1100〉),
1√
2

(|0101〉 + |1010〉), 1√
2

(|0110〉 + |1001〉), (6)

for n = 4. Thus we find a decoherence-free encoding for n − 2 = 2
qubits by projecting onto this invariant subspace spanned by these
basis vectors. It should be noted that the projection operator P
to the subspace spanned by the four vectors in Eq. (6) satis-
fies rank P = 4 and P X4 P = P Y4 P = P Z4 P = P , which shows
(1,1,1) ∈ Λ4(X4, Y4, Z4). It is easy to generalize this result to
cases with arbitrary n = 2m > 2. Figs. 2(a) and 2(b) depict quan-
tum circuits for (a) n = 4 and (b) n = 6, respectively.

3. Summary and discussions

We have shown that there is a quantum error correction which
suppresses fully correlated errors of the form {σ⊗n

x , σ⊗n
y , σ⊗n

z }, in
which n qubits are required to encode (i) n − 1 data qubit states
when n is odd and (ii) n − 2 data qubit states when n is even.
We have proved these statements by using operator theoretical
technique. Neither syndrome measurements nor ancilla qubits for
syndrome measurement are required in our scheme, which makes
physical implementation of our scheme highly practical. Examples
with n = 3 and n = 5 are analyzed in detail and explicit quantum
circuits implementing our QEC with the least number of CNOT gate
were obtained.

Since the error operators are closed under matrix multiplica-
tion, errors can be corrected even when they act on the codeword
many times.

A somewhat similar QEC has been reported in [6]. They ana-
lyzed a partially correlated noise, where the error operators acts on
a fixed number of the codeword qubits simultaneously. They have
shown that the quantum packing bound was violated by taking
advantage of degeneracy of the codes. Justification of such a noise
physically, however, seems to be rather difficult. They have also
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Fig. 1. Encoding and recovery circuits, which encode and recover an arbitrary (n − 1)-qubit state ρ with a single ancilla qubit initially in the state |0〉〈0|. The circuit (a) is for
n = 3 while (b) is for n = 5. The quantum channel in the box represents a quantum operation with fully correlated noise given in Eq. (1). The output ancilla state is ∗ = 0
(1) for error operators I⊗3 and Z3 (X3 and Y3) for n = 3 and ∗ = 0 (1) for I⊗5 and Z5 (X5 and Y5) for n = 5.

Fig. 2. Encoding and recovery circuits, which encode and recover an arbitrary (n − 2)-qubit state ρ with two ancilla qubit initially in the state |00〉〈00|. The circuit (a) is for
n = 4 while (b) is for n = 6. The quantum channel in the box represents a quantum operation with fully correlated noise given in Eq. (1). The output ancilla state is always
|00〉〈00|, irrespective of error operators acted in the channel.

shown that correlated noise acting on an arbitrary number n of
qubits can encode k = n − 2 data qubits. In contrast, we have ana-
lyzed a fully correlated noise, which shows the highest degeneracy,
and have shown that k = n − 1 data qubits can be encoded with
an n-qubit codeword when n is odd. Clearly, our QEC suppressing
fully correlated errors is optimal as it is clear that one cannot en-
code n qubits as data qubits for odd n and we have shown that
one cannot encode n − 1 qubits for even n.
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