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Abstract

We propose a quantum error correction without error detection. A quantum state ρ0 combined

with an ancilla state σ is encoded unitarily and an error operator is applied on the encoded state.

The recovery operation then produces a tensor product state ρ0 ⊗ σ′. The decoding operation is

combined with the recovery operation and the state ρ0 is directly reproduced without referring to

the code word. A higher rank projection operator required for a conventional operator quantum

error correction is not necessary to implement. Encoding and the recovery operations are imple-

mented with unitary operators only, which makes quantum error correction much easier than any

other proposals.
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A quantum system is vulnerable against disturbance from the environment. Environ-

mental disturbance works as a source of decoherence and it must be suppressed to realize a

working scalable quantum computer. Among many proposals to fight against decoherence,

quantum error correcting code (QECC) is one of the most promising strategy to overcome

decoherence. There are two main approaches to QECC to date. One employs syndrome mea-

surements with extra ancilla qubits,[1, 2] while the other does not.[3] The latter is known

as the operator quantum error correction (OQEC). In both approaches, a qubit state ρ0

together with ancilla qubit state σ are encoded in the code space C as ρ = UE(ρ0 ⊗ σ), on

which an error operator E acts subsequently. Here UE is the encoding unitary operator. The

recovery operator R is applied on the state with an error to reproduce the initial code word

ρ. Then a decoding operator U−1
E is applied to obtain ρ0 ⊗ σ. In other words, QECC works

if it satisfies

R(E(ρ)) = ρ (ρ ∈ C). (1)

This is certainly a sufficient condition to reproduce the qubit state ρ0 via recovering of the

code word ρ.

It is the purpose of this Letter to propose a more efficient QECC. We replace the condition

(1) by

R(E(UE(ρ0 ⊗ σ))) = ρ0 ⊗ σ′, (2)

where σ′ is an output ancilla state which depends on σ and the error operator E . An essential

observation is that the output state is a tensor product of ρ0 and σ
′. It is also important to

note that although we use the code space in encoding a qubit state, it is not referred to in the

recovery process. The recovery operation here involves the decoding process without going

through the cord space. Since the output state is a tensor product state, we can discard the

ancillas without disturbing the qubit state ρ0.

Let us examine the simplest bit-flip error channel. A qubit state |ψ0〉 = α|0〉 + β|1〉 is

encoded by introducing two ancilla qubits as

UE(|ψ0〉|00〉) = α|0〉L + β|1〉L ≡ |ψ〉, (3)

where |0〉L = |000〉 and |1〉L = |111〉 are logical qubit basis vectors. We introduce the density

matrices ρ0 = |ψ0〉〈ψ0| and ρ = |ψ〉〈ψ| to denote these pure states.
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Now the error operator acts on ρ as

Φ(ρ) = p0ρ+

3
∑

i=1

piXiρXi ≡ ρ′, (4)

where
∑3

i=0 pi = 1 and Xi stands for the bit-flip operator acting on the i-th qubit. (X1 =

X ⊗ I2⊗ I2, for example, where X = σx and In is the unit matrix of order n.) Here pi is the

probability with which Xi acts on ρ while p0 is the probability with which ρ is left intact.

We formally introduce X0 = I2
⊗3 to denote the latter process so that (4) is rewritten as

Φ(ρ) =
3
∑

i=0

piXiρXi. (5)

The conventional error recovery operation is studied in detail for this channel in [4], in

which a superoperator Ψ is used as

Ψ(ρ′) = P07

(

3
∑

i=0

Xiρ
′Xi

)

P07, (6)

where Pij is a rank-2 projection operator onto a subspace Span(|i〉, |j〉) with decimal indices

i and j. Explicitly, it is given by

P07 = |0〉LL〈0|+ |1〉LL〈1| = diag(1, 0, 0, 0, 0, 0, 0, 1).

The recovery operation introduced here is a superoperator, whose physical realization is

challenging compared to unitary operations. Furthermore the rank-2 projection operator is

also difficult for physical implementation in general.

These difficulties are avoided if the recovery operation is implemented with unitary ma-

trices only and the unitary matrix acting on the error state ρ′ outputs a tensor product state

ρ0 ⊗ σ′. We simply discard σ′ since it does not carry any useful information. Let us write
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down the density matrix ρ′ = E(ρ) explicitly to find the recovering unitary matrix;

ρ′ =
3
∑

i=0

pi Xi ρ Xi

=







































p0|α|2 0 0 0 0 0 0 p0αβ
∗

0 p3|α|2 0 0 0 0 p3αβ
∗ 0

0 0 p2|α|2 0 0 p2αβ
∗ 0 0

0 0 0 p1|β|2 p1α
∗β 0 0 0

0 0 0 p1αβ
∗ p1|α|2 0 0 0

0 0 p2α
∗β 0 0 p2|β|

2 0 0

0 p3α
∗β 0 0 0 0 p3|β|2 0

p0α
∗β 0 0 0 0 0 0 p0|β|2







































(7)

By inspecting the above matrix, we immediately notice that a permutation P(3,4) of two

basis vectors |011〉 = |3〉 and |100〉 = |4〉, followed by a reverse ordering operation P(4,5,6,7)

of basis vectors |4〉, |5〉, |6〉 and |7〉 maps ρ′ a tensor product form;

R ρ′ R†

=







































p0|α|2 0 0 0 p0αβ
∗ 0 0 0

0 p3|α|
2 0 0 0 p3αβ

∗ 0 0

0 0 p2|α|2 0 0 0 p2αβ
∗ 0

0 0 0 p1|α|2 0 0 0 p1αβ
∗

p0α
∗β 0 0 0 p0|β|

2 0 0 0

0 p3α
∗β 0 0 0 p3|β|2 0 0

0 0 p2α
∗β 0 0 0 p2|β|2 0

0 0 0 p1α
∗β 0 0 0 p1|β|

2







































=





|α|2 αβ∗

α∗β |β|2



⊗















p0 0 0 0

0 p3 0 0

0 0 p2 0

0 0 0 p1















, (8)

where

R = P(4,5,6,7)P(3,4) = P(3,7)P(4,5,6,7). (9)

Although the second matrix in the bottom of Eq. (8) depends on the error operator, the first

matrix reproduces the initial state exactly. Since the recovered state is a tensor product of
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FIG. 1. 3-qubit QECC for a bit-flip channel. The input state is ρ0 ⊗ σ while the output state is

ρ0⊗σ′. UE , E and R are encoding circuit, error operation, and the ecovery operation, respectively.

Needless to say, the unitary matrices act on both sides of a density matrix (adjoint representation).

NX stands for the bit-flip noise.

ρ0 and an ancillary state, we can safely discard the ancillas without leaving any trace on the

first qubit and error correction is done. This last step corresponds to a rank-2 projection,

whose physical realization is trivial in our scheme.

The permutation matrices P(4,5,6,7) and P(3,7) are nothing but [C1X2X3] and [X1C2C3]

gates, respectively. Here we introduced the notation in which Ci means that the ith qubit

works as a control bit in the gate. For example, [C1X2X3] stands for the controlled-NOT-

NOT gate in conventional nomenclature, which has been used for encoding in Eq. (3). In

summary, encoding, error and recovery operations for this QECC are depicted as Fig 1

It is instructive to rewrite the recovery operator in a different form to obtain a hint to

find a recovery matrix R for more complicated cases. Let {|i〉} be the set of basis vectors

arranged as {|000〉, |001〉, |010〉, . . . , |110〉, |111〉} and {|i′〉} be the set of basis vector after

the permutation operation P(4,5,6,7)P(3,4) is applied, namely,

{|i′〉} = {|000〉, |001〉, |010〉, |100〉, |111〉, |110〉, |101〉, |011〉}

= {|0〉L, X3|0〉L, X2|0〉L, X1|0〉L, |1〉L, X3|1〉L, X2|1〉L, X1|1〉L}. (10)

Then the recovery operator has the matrix elements Rij = 〈i′|j〉. Explicitly R has the matrix
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form

R =







































L〈0|

L〈0|X3

L〈0|X2

L〈0|X1

L〈1|

L〈1|X3

L〈1|X2

L〈1|X1







































. (11)

Note that this recovery matrix acts on a state vector with an error Xi as

RXi|ψ〉 = |ψ0〉 ⊗ | ∗ ∗〉 (12)

due to the orthnormality L〈m|XT
i Xj |n〉L = δijδmn. The ancilla state | ∗ ∗〉 depend on i, i.e.,

it tells us which error operator has acted on |ψ〉.

Now we are ready to extend our result to more complicated QECC, such as Shor’s 9-

qubit QECC[1] or the DiVincenzo-Shor 5-qubit QECC.[2] Let us work out the latter QECC

for definiteness. Now the error operator E involves Xi, Yi and Zi, where Yi and Zi stand

for Y = −iσy and Z = σz, respectively, acting on the ith qubit. Let UE be the encoding

operator

UE [(α|0〉+ β|1〉)|0000〉] = α|0〉L + β|1〉L, (13)

where the logical qubit basis vectors are

|0〉L =
1

4

[

|00000〉+ |11000〉+ |01100〉+ |00110〉+ |00011〉+ |10001〉

−|10100〉 − |01010〉 − |00101〉 − |10010〉 − |01001〉

−|11110〉 − |01111〉 − |10111〉 − |11011〉 − |11101〉
]

(14)

and

|1〉L =
1

4

[

|11111〉+ |00111〉+ |10011〉+ |11001〉+ |11100〉+ |01110〉

−|01011〉 − |10101〉 − |11010〉 − |01101〉 − |10110〉

−|00001〉 − |10000〉 − |01000〉 − |00100〉 − |00010〉
]

. (15)

Let E be the error operator which is expressed in terms of the operators

{I32, X1, X2, . . . , X5, Y1, Y2, . . . , Y5, Z1, Z2, . . . , Z5}. (16)
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Here X1 = X⊗I⊗4 for example. It turns out to be convenient to rename the above operators

as {Wi}0≤i≤15. For example, we have W0 = I32,W1 = X1, . . . ,W15 = Z5. Suppose

ρ′ = E(ρ) =
15
∑

i=0

piWiρW
T
i (17)

be the error state to be recovered. We try the following recovery matrix, which is inspired

by the 3-qubit bit-flip QECC example,

R =



















































|0〉L
T

(W1|0〉L)
T

(W2|0〉L)
T

...

(W15|0〉L)
T

|1〉L
T

(W1|1〉L)
T

(W2|1〉L)
T

...

(W15|1〉L)
T



















































. (18)

The application of R on an error state E(ρ) outputs the following state

Rρ′RT = ρ0 ⊗ σ′, (19)

where ρ0 = |ψ0〉〈ψ0| as before and

σ′ = diag(p0, p1, . . . , p14, p15). (20)

A quantum circuit which implements the five-qubit QECC is shown in Fig. 2, in which the

encoding circuit is taken from [5].

The matrix R is orthogonal and can be implemented with elementary quantum gates such

as one-qubit gates and CNOT gates in principle. Nonetheless, it is not a simple permutation

gate any more due to the complicated structure of the logical qubit states |0〉L and |1〉L and

its implementation must be challenging. Let us look at Fig. 1 to find a hint to overcome

this problem. The recovery operation is made of the inverse encoding circuit [C1X1X2] and

a permutation of basis vectors given by the controlled-controlled NOT gate [X1C2C3]. We

also tried the inverse encoding circuit UE
−1 in our 5-qubit. Then it turned out that the first
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FIG. 2. 5-qubit QECC. The input state is ρ0⊗|0000〉〈0000| while the output state is ρ0⊗σ′. UE , E

and R are encoding circuit, error operation, and recovery operation, respectively. NW stands for

the 15 noise operators.

qubit state does not agree with |ψ0〉 exactly for some errors and we need additional bit-flips

and/or phase-flips to correct this. Circuit implementation of this recovery operation will be

reported elsewhere.

Shor’s 9-qubit QECC is also implemented with a unitary recovery matrix. It is a trivial

generalization of the 3-qubit bit-flip QECC and we simply give the circuit for this case in

Fig. 3 without giving the lengthy details, which will be reported elsewhere.

In summary, we proposed an efficient implementation of QECC, whose recovery process

involves unitary operations only. No syndrome readouts nor higher-rank projection operators

are required. This makes physical implementation of QECC considerably easier. We have

demonstrated our proposal with 3-qubit bit-flip QECC, DiVincenzo-Shor’s 5-qubit QECC

and Shor’s 9-qubit QECC. Details of our QECC, involving efficient decomposition of the

recovery operation into elementary gates, are in preparation and will be reported elsewhere.
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FIG. 3.
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