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[I~ the present article, the substance of the lecture is 
reproduced--with large additions, in which work com- 
menced at the beginning of last year and continued after 
the lecture, during thirteen months up to the present tim% 
is described--with results confirming the conclusions and 
largely extending the illustrations which were given in the 
lecture. [ desire to take this opportunity of expressing my 
obligations to Mr. William Anderson, my secretary and 
assistant, for the mathematical tact and skil!, the accuracy 
of geometrical drawing, and the unfailingly faithful per- 
severance in the long-continued and varied series of drawings 
and algebraic and arithmetical calculations, explained in the 
following pages. The whole of this work, invoh, ing the 
determination of results due to more than five thousand 
individual impacts~ has been performed by Mr. Anderson.-- 
K., Feb. 2~ 1901.] 

w 1. T H E  beauty and clearness of the dynamical theory, 
J _  which asserts heat and light to be modes of 

motion, is at present obscured by two clouds. I. The first 
came into existence with the undulatory theory of light, and 

~* Lectm'e delivered at the Royal Institution of Great Britain, o1~ 
Friday, April 27, 1900. 

t Communicated by the Author. 
Phil. Mag. S. 6. Vol. 2. :No. 7. July 1901. B 
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2 Lord Kelvin ou the 

was dealt with by Fresnel and Dr. Thomas Young; it 
involved the question, t tow could the earth move through 
an elastic solid, such as essentially is the luminiferous ether ? 
II. The second is the Maxwell-Boltzmann doctrine regarding 
tim partition of energy. 

2 . - - ( ] L O U D  I . - - R E L A T I Y E  MOTIOR T OF ETHER AND PON- 
DERABLE BODIES; such as movable bodies at the earth's 
surface, stones, metals, liquids, gases; the atmosphere 
surrounding the earth; tile earth itself as a whole; meteo- 
rites, the moon, the sun, and other celestial bodies. We 
might imagine the question satisfactorily answered, by 
supposing ether to have practically perfect elasticity fbr 
the exceedingly rapid vibrations, with exceedingly small 
extent of' distortion, which constitute light; while it behaves 
almost like a fluid of very small viscosity, and yields with 
exceedingly small resistance, practically no resistance, to 
bodies moving through it as slowly as even the most rapid 
of the heavenly bodies. There are, however, many very 
serious objections to this supposition; among them one 
which has been most noticed, though perhaps not really the 
most serious, that it seems incompatible with the known 
phenomena of the aberration of light. Referring to it~ 
Fresnel, in his celebrated letter* to Arago, wrote as 
follows : 

"Mais  il paralt impossible d'expliquer l'aberration des 
" 6toiles dans cette hypoth~se; je n'ai pu jusqu'~ prdsent 
" du moins concevoir nettement ce ph6nom~ne qu'en sup- 
" posant que l'bther passe librement au travers du globe, 
" et que la vitesse communiqude h ce fluide subtil n'est 
" qu'une petite partie de celle de la terre ; n'en exc~de pas 
*~ le centi~m% par exemple. 

" Quelque extraordinaire que paraisse cette hypoth~se au 
'~ premier abord, e]le n'est point en contradiction, ce me 
" semble, avec l'idde que les plus grands physiciens se sent 
"~ faite de l'extr~me porosit6 des corps." 

The same hypothesis was given by Thomas Young, in his 
celebrated statement that ether passes through among the 
molecules or atoms of material bodies like wind blowing 
through a grove of trees. It is clear that neither lq'resnel 
nor Young had the idea that the ether of their undulatory 
theory of light, with its transverse vibrations, is essentially 
an elastic solid, that is to say, matter which resists change of 
:shape with permanent or sub-permanent force. I f  they had 

* Annales de CMmie, 1818 ; quoted in full by Larmor in his recent 
book, ~ 2Ether and Matter,' pp. 320-322. 
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grasped this idea, they must have noticed the enormous 
difficulty presented by the laceration which tile ether must 
experience if it moves through pores or interstices among 
the atoms of matter. 

w 3. I t  has occurred to me that, without contravening 
anything we know from observation of nature, we may 
simply deny the scholastic axiom that two portions of matter 
cannot jointly occupy the same space, and may assert, as an 
admissil~le hypothesis, that ether does occupy the same space 
as ponderable matter, and that ether is not displaced by 
ponderable bodies moving through space occupied by ether. 
But how then could matter act on ether, and ether act on 
matter, to produce the known phenomena of light (or radiant 
heat), generated by the action of ponderable bodies on ether, 
and acting on ponderable bodies to produce its visual, 
chemical, phosphorescent, thermal, and photographic effects ? 
There is no difficulty in answering this question if, as it 
probably is, ether is a compressible and dilatable ~ solid. 
We have only to suppose that the atom exerts force on the 
ether, by which condensation or rarefaction is produced 
within the space occupied hy the atom. At present ~f I 
confine myself, for the sake of simplici(,y, to the suggestion 
of a spherical atom producing condensation and rarefaction, 
with concentric spherical surfaces of equal density, but the 
same total quantity of ether within its boundary as the 
quantity in an equal volmne of free undisturbed ether. 

w 4. Consider now such an atom given at rest anywhere in 
space occupied by ether. Let  force be applied to it to cause 
it to move in any direction, firs~ with gradually increasing 
speed, and after that with uniform speed. I f  this speed is 
anything less than the velocity of light, the fbrce m-~y be 
mathematically proved to become zero at some short time 
after the instant when the velocity of the atom becomes 
uniform, and to remain zero for ever thereafter. What  takes 
place is this : 

w 5. During all the time in which the velocity of the atom 
is being augmented from zero, two sets of non-periodic waves, 
one of them equi-voluminal, the other irrotational (which is 
r condensational-rarefaetional), are being sent out in 

* To deny this property is to attribute to ether infinitely great resist- 
~ance against forces tending to condense it or to dilate it--which seems, 
in truth, an infinitely difficult assumption. 

t Further developments of the suggested idea have been contributed 
r the Royal Society of Edinburgh, and to the Congr~s International de 
Physique, held in Paris in August. (Prec. R.S.E. July 1900 ; vol. of 
reports, in French, of the Cong. Inter. ; and Phil. Mag., Aug., Sept, 
1900.) 
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all directions through tl;e surrounding ethel'. The rears 
of the last of these waves leave the atom, at some time after 
its acceleration ceases. This time, if  the motion of the ethel" 
outside the atom, close beside it, is infinitesimal, is equal to 
the time taken by the slower wave (which is the equi- 
voluminal) to travel  the diameter of the atom, and is the 
short time referred to in w 4. When  the rears of both waves 
have got  clear of the atom, the ether within it and in ~he 
space around it, left clear by both rears, has come to a steady 
state of motion relatively to the atom. This steady motion, 
approximates more and more nearly to uniform motion in 
parallel lines, at greater  and greater  distances from the atom. 
At a distance of twenty diameters it differs exceedingly little 
from uniformity. 

w 6. But  it is only when the velocity of the atom is 
very small in comparison with the velocity of light, that 
the disturbance of the ether in the space close round the 
atom is infinitesimal. The propositions asserted in w 4 and 
the first sentence of w 5 are true, however little the final 
velocity of the atom falls short of the velocity of light. I f  
this unitbrm i~nal velocity of the atom exceeds the velocity 
of light, by ever so litt'ie, a non-periodic c~nical wave of  
equi-voluminal motion is produced, according to the same 
principle as that illustrated for sound by Maeh's beautiful 
photographs .~ illumination., by.. electric, spark, showin, g, by 
changed refractivity, the condensatmnal-rarefactxonal dis- 
turbance produced in air by the motion through it of a rifle 
bullet. The semi-vertical angle of the cone, whether in air  
or ether, is equal to the angle whose sine is the ratio o f  the 
wave velocity to the velocity of the moving body % 

On the same principle we see that a body moving steadily (and, 
with little error, we may say also that a fish or water-fowl propelling 
itself by fins or web-leer) through calm water, either floating on the: 
surface or wholly submerged at some moderate distance below the sur- 
face, produces no wave disturbance if its velocity is less than the 
minimum wave velocity due to gravity and surfitce tension (being about 
23 cms. per second, or '44 of a nautical mile per hour, whether for sea 
water or fresh water); and if its velocity exceeds the minimum wave 
velocity, it produces a wave disturbance bounded by two lines inclined 
on each side of its wake at angles each equal to the angle whose sine is 
the minimum wave velocity divided by the velocity of the moving body. 
It  is easy for anyone to observe this'by dipping vertically a pencil or'a 
walking-stick into still water in a pond (or even in a good-sized hand 
basin), and moving it horizontallv, first with exceeding small speed, and 
afterwards faster and faster. I iirst noticed it nineteen years ago, and 
described observations for an experimental determination of the minimmu 
velocity of waves, in a letter to William Froude, published in 'Nature '  

,T r for October ~6, and in the Phil. Mag. for No~ember 187], fl'om which 
the following is extracted. "[Recent lv ,  in the schooner yacht Zalla 
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w 7. I f ,  for a moment ,  we imagine the steady motion of 
the a tom to be at a higher  speed than  the wave velocity 
of the condensational-rarefactiona[ way% two conical waves, 
of angles corresponding to the two wave velocities, will be 
steadily produced ; but  we need not occupy  ourselves at 
present  with this case because the velocity of the condensa- 
t ional-rarefactional wave in ether is, we are compelled to 
believe: enormously  great  in comparison with the velocity 
of  light. 

w 8. Le t  now a periodic force be applied to the a tom so as 
~o cause it to move to and fro continually,  with simple har-  
monic  motion. By  the first sentence of  w 5 we see that  two 
sets of  periodic waves~ one equi-voluminal,  the other  i rrota-  
~ional, are cont inual ly  produced.  Wi thou t  mathematical  
invest igat ion we see that  if, as in ether~ the condensational- 
rareihctional wave velocity is very  grea t  in comparison with 
.~he equi-voluminal  wave velocity, the ene rgy  taken by the 
condensational-rarefactional ,  wave is exceedingly  small in 
compar ison with that  taken by the equi-voluminal  w a v e ;  
how small we can find easily enough  by regular  mathematical  
investigation.  Thus we see how it is that  the hypothesis  of 
,w 3 s uitlces for the answer suggested in that  section to the 
question, H o w  could mat ter  act en ether so as to produce 
l ight  ? 

w 9. But  this, t hough  of  p r imary  importance,  is only a 
small  par t  of  the very  general  question pointed out  in w "~ 
as needing answer. Another  part,  fundamenta l  in the 

~' .Rookh~, being becalmed in the Sound of Mull, I had an excellent 
" opportunity, with the assistance of Professor Helmholtz, and my 
" brother from Belfast (the late Professor James ThomsonJ, of deter- 
" mining by observation the minimum wave-velocity with some approach 
t' to accuracy. The fishing-line was hung at a distance of two or three 
~ feet from the vessel's side, so as to cut the water at a point not sensibly 
" disturbed by the motion of the vessel. The speed was determmed by 
" throwing into the sea pieces of paper previously wetted, and observing 
,~' their times of transit, across parallel p]aaes~ at a distance" of 912 centi- 

metres asunder, fixed relatively to the vessel by marks on the deck and 
"gunwale. By watching carefully the pattern of r!pples and waves which 
" connected the ripples in front with the waves m rear, I had seen that 
" i t  included a set of parallel waves slanting off obliquely on each side 
" and presenting appearances which proved them to be waves of the 

cntmal length and corresponding mammum speed of propagation. 
When the speed of the yacht fell to but little above the critical velocity, 
the i~ont of the ripples was very nearly perpendicular to the line of 
motion, and when it just fell below the critical velocity the ripples 
disappeared altogether, and there was no perceptible disturbance on the 
surface of the water. ]'he sea was "glassy " ; though there was wind 
enough to propel the szhooner at speed varying between �88 mile and 
1 mile per hour. 
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undulatory theory of optics, is, How is it that the velocity 
of light is smaller in transparent ponderable matter than in 
pure ether ? Attention was called to this particular question 
in my address, to the Royal Institution, of last April ; and a 
slight explanation of my proposal for answering it was given, 
and illustrated by a diagram. The "r of this proposal 
is confirmed by a somewhat elaborate discussion and mathe- 
maticat investigation of the subject worked out since that 
time and communicated under the title, " On the Motion 
produced in an infinite Elastic Solid by the Motion through 
the Space occupied by it of It Body acting on it only by 
Attraction or Repulsion," to the Royal Society of' Edinburgh 
on July 16, and to the Congr~s International de Physique 
for its meeting at Paris in the beginning of August *. 

w 10. The other phenomena referred to in w 3 come 
naturally under the general dynamics o1! the undulatory 
theory of light, and the full explanation of them all is 
brought much nearer if we have a satisfhctory fundamental 
relation between ether and matter, instead of the old intract- 
able idea that atoms of matter displace ether from the space 
before them, when they are in motion relatively to the ether 
around them. May we then suppose that the hypothesis 
which I have suggested clears away the first of our two 
clouds ? It  certainly would explain the " aberration of 
l ight"  connected witl~ the earth's motion through ether in 
a thoroughly s'ttisfactory manner. It would allow the earth 
to move with perfbct freedom through space occupied by 
ether without displacing it. In passing through the earth 
the ether, an elastic solid, Would not be lacerated as it would 
be according to Fresnel's idea of porosity and ether moving 
through the pores as if it were a fluid. Ether would move 
relatively to ponderables with the perfect freedom wanted 
for what we know of aberration, instead of the imperfect 
freedom of air moving through a grove of trees suggested by 
Thomas Young. According to it, and for simplicity neglect- 
ing the comparatively very small component due to the 
earth's rotation (only "46 of a kilometre per second at the 
equator where it is a maximum), and neglecting the imper- 
fectly known motion of the solar system through space 
towards the constellation Hercules, discovered by Herschel t ,  

* Phil. Mag., Aug. 1900. 
t The splendid spectroscopic method originated by I-Iuggins thirty- 

three years ago, for measuring the component in the line of vision of the 
relative motion of the earth, and any visible star, has been carried on 
since that time with admirable perseverance and skill by other observers~ 
who have from their results made estimates of the velocity and direction 
of the motion through space of the centre of inertia of the solar system. 
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there would be at all points of the earth 's  surface a flow of" 
ether at the rate of  30 kilometres per second in lines all 
parallel to the tangent  to the earth 's  orbit round the sun. 
There is nothing inconsistent with this in all we know of the 
ordinary phenomena of terrestrial optics ; but, alas ! there is 
inconsistency with a conclusion that ether in the earth 's  
atmosphere is motionless relatively to the earth, seemingly 
proved by an admirable experiment designed by Michelsen~ 
and carried out, with most searching care to secure a trust- 
worthy result, by himself and Mor ley* .  I cannot see any 
flaw either in the idea or in the execution of this experiment.  
But  a possibility of escaping from the conclusion which it 
seemed, to prove, may. be found in a brilliant suggestiou made 
independently by FltzG~rald t and by Lorentz ~ of Leyden,  
to the effect that the motion of ether through matter  may 
slightly alter its linear dimensions, according to which if the 
stone slab constituting the sole plate of Michelsen and 
Morley's apparatus has, in virtue of its motion through space 
occupied by ether, its lineal dimensions shortened one one- 
hundred-millionth w in the direction of motion, the result of 
the experiment wouhl not disprove the free motion of ether 
through space occupied by the earth. 

w 11. I am afraid we must  s~ill regard Cloud No. I .  as 
very dense. 

w 12. CLOUD I L ~ W a t e r s t o n  (in a communication to the 
Royal  Society, now famous;  which, after  lying forty-five 
years buried and ahnost forgotten in the archives, was 

My Glasgow colleague, Professor Becker, has kindly given me the fol- 
lowing information on the subject of these researches : 

" The early (1888) Potsdam photographs of the spectra of 51 stars 
brighter than 2=~ magnitude have been employed for the determination 
of the apex and velocity of the solar system. Kempf (Astronomische 
Nachrlchten, vol. 132) finds for the apex : right ascension, 206 ~ -{- 12 ~ ; 
declination, 46 ~ -t-9~ velocity, 19 kilometres per second; and Risteen 
()~stronomical Jmlrnal~ 1893) finds practically the same quantities. The 
proper motions of the fixed stars assign to the apex a position which 
may be anywhere in a narrow zone parallel to the Milky-way, and ex- 
tending 20 ~ on both sides of a point of Right Ascension 275 ~ and 
Declination -]- 30 ~ The authentic mean of 13 values determined by 
the methods of Argelander or Airy gives 274 ~ and -t- 35 ~ (Andrd, 
Traitd d' Astronoraie Stellaire)." 

* Phil. Mag., December 1887. 
t Public Lectures in Trinity College Dublin. 
$ Versueh einer Theorie de~" eleet~:ischen and optlschen J~rschelnungert 

in bewegten Kb'rpe~. 
w This being the square of the ratio of the earth's velocity round the 

sun (30 kilometres per sec.) to the velocity of light (300,000 kilomotrea 
per see.). 
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rescued from oblivion by Lord Rayleigh and published, with 
an introductory notice of great interest and importance, in 
the Transactions of the Royal Society for 1892), enunciated 
the followingp pro osition-. " I n  mixed media the mean square 
"molecular  velocity is inversely proportional to the specific 
'~ weight of the molecule. This is the law of the equilibrium 
" of vis viva." Of this proposition Lord Rayleigh in a 
footnote * says, " T h i s  is the first statement of a very 
" impor tan t  theorem (see also Brit. Assoc. Rep., 1851). 
" T h e  demonstration, however, of w 10 can hardly be de- 
"' fended. I t  bears some resemblance to an argument 
" indicated and exposed by Professor Tail (Edinburgh 
"' Trans., vol. 33, p. 79, 1886). There is reason to think 
" t h a t  this law is intimately connected with the Maxwellian 
" d i s t r i b u t i o n  of velocities of which Waterston had no know- 
" ledge." 

w 13. In Waterston's statement, the " specific weight of 
a molecule" means what we now call simply the mass of a 
molecule ; and " m o l e c u l a r  veloci ty"  means the translational 
velocity of a molecule. Writ ing on the theory of sound in 
the Phil. Mag. for 1858, and referring to the theory de- 
veloped in his buried paper t ,  Waterston said, " T h e  theory 
"' . . . . .  assumes . . . .  that if the impacts produce rotatory 
"' motion the vis viva thus invested bears a constant ratio to 
" the rectilineal vis viva." This agrees with the very 
important principle or truism given independently about the 
same time by Clausius to the effect that the mean energy, 
kinetic and potential, due to the relative motion of all tbe 
parts of any molecule of a gas, bears a constant ratio to 
the mean energy of the motion of its centre of inertia when 
the density and pressure are constant. 

w 14. Without any knowledge of what was to be found in 
Waterston's buried paper, Maxwell, at the "meeting of the 
British Association at Aberdeen, in 1859 $ gave the following 
proposition regarding the motion and collisions of perfectly 
elastic spheres : "Two systems of particles move in the same 
" vessel ; to prove that the mean vis viva of each particle 
" will become the same in the two systems." This is pre- 
cisely Waterston's proposition regarding the law of partition 
of  energy, quoted in w 12 above ; but Maxwell's 1860 proof 
was certainly not more successful ill,In W:lfel'gl~Oil'S. Max- 

Phil. Trans. A, 189"2, p. 16. 
t "On the Physics of Media that are composed of Force and Perfectly 

Elastic Molecules ill a State of Motion." Phil. Trans., A, 1892, p. 13. 
1: "Illustrations of the Dynamical Theory of Gases," Phil. Mat., 

January and July 1860, and collected works, vol. i. p. 378. 
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well's 1860 proof has always seemed to me quite inconclusive, 
and many times I urged my colleague, Professor Tait, to 
enter on the subject. Yhis he did, and in 1886 he com- 
municated to the Royal Society of Edinburgh a paper* on 
the foundations of the kinetic ' theory of gases, which con- 
tained a critical examination of Maxwell's 1860 paper, highly 
appreciative o[' the great originality and splendid value, for 
the kinetic theory of gases, of the ideas and principles set 
forth in i t ;  hut showing that the demonstration of the 
theorem of the partition of energy in a mixed assemblage of 
particles of different masses was inconclusive, and success- 
fully substituting for it a conclusive demonstration. 

w 15. Waterston, Maxwell, and Tait, all assume that the 
particles of the two systems are thoroughly mixed (Tait, 
w 18), and their theorem is of fundamental importance in 
respect to the specific heats of mixed gases. But they do 
not, in any of the papers already referred to, give any 
indication of a proof of the corresponding theorem, regarding 
the partition of energy between two sets of equal particles 
separated by a membrane impermeable to the molecules~ 
while permitting forces to act across it between the mole- 
cules on its two sides t ,  which is the simplest illustr~ltion of 
the molecular dynamics of Avogadro's law. I t  seems to me, 
however, that Tait's demonstration of the Waterston-Maxwell 
law may possibly be shown to virtually include, not only this 
vitally important subject, but also the very inte~'esting, 
~hough comparatively unimportant, case of an assemblage of 
particles of equal masses with a single particle of different 
mass moving about among them. 

w 16. In w167 12, 14, 15, " part icle" has been taken to mean 
what is commonly, not correctly, called an elastic sphere, bu~ 
what is in reality a Boscovich atom acting on other atoms in 
lines exactly through its centre of inertia (so that no rotation 
is in any case produced by collisions), with, as law of action 
between two atoms, no force at distance greater than the sum 
~f their radii, infinite force at exactly this distan, ce. None of 
the demonstrations, unsuccessful or successful, to which [ 
have referred would be essentially altered if, instead of this 
last condition, we substitute a repulsion increasing with 

* Phil. Trans. R.S.E., "On the Foundations of the Kinetic Theory of 
Gases," May 14 and December 6, 1886, and Januury 7, 1887. (Abstract 
in Phil. Mag. April 1886 and Feb. 1887.) 

~" A very interesting statement is given by Maxwell regarding this 
subject in his latest paper regarding the Boltzmann-Maxwell doctrine. 
"On Boltzmann's Theorem on the Average Distribution of Energy in a 
System of Material Points,, Camb. Phil. Trans., May 6~ 1878; Collected 
Works, vol. it. pp. 713-741. 
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diminishing distance, according to any law for distances less 
than the sum of the radii, subject only to the condition that 
it would be infinite before the distance became zero. In fact 
the impact, oblique or direct, between two Boscovich atoms 
thus defined, has the same result after the collision is com- 
pleted (that is to say, when their spheres of action get outside 
one another) as collision between two conventional elastic 
spheres, imagined to have radii dependent on the lines and 
velocities of approach before collision (the greater the relative 
velocity the smaller the effective radii) ;  and the only as- 
sumption essentially involved in those demonstrations is, that 
the radius of each'sphere is very small in comparison with 
the average length of free path. 

w 17. But if the particles are Boscovich atoms, having: 
centre of inertia not coinciding with centre of force ; or quas~ 
Boscovich atoms, of non-spherical figure; or (a more accept- 
able supposition) if each particle is a cluster of two or more 
Boscovich atoms : rotations and changes of rotation would 
result from collisions. Waterston's aml Clausius' leading 
principle, (]noted in w 13 above, must now be taken into 

t r �9 , �9 account, an l Trot s demonstratmn is no longer applicable. 
Waterston mad Clamms, In respect to rotation, both wisely 
abstained from saying more than that the average kinetic 
energy of rotation bears a constant ratio to the average 
kinetic energy of translation. With magnificent boldness 
Boltzmann and Maxwell declared that the ratio is equality ; 
Boltzmann having found what seemed to him a demonstra- 
tion of this remarkable proposition, and Maxwell having 
accepted the supposed demonstration as valid. 

w 18. Boltzmann went fur ther*  and extended the theorem 
of equality of mean kinetic energies to any system of a finite 
nmnber of material points (Boscovich atoms) acting on one 
another, according to any law of ibrce~ and moving freely 
among one another ;  and finally, M.~xwell ~" gave a demon- 
stration extending it to the generalized Lagrangian eo-ordi- 
nares of any system whatever, with a finite or infinitely great 
number of degrees of fi'eedom. The words in which he 
enunciated his supposed theorem are as follows : 

" The only assumption which is necessary for the diree~ 
"proof  is that the system, if left to itself in its actual state of 

�9 "Studien iiber das Gleichgewicht der lebendigen Kraft zwisehen 
bewegten materiellen Punkton." Sitzb. lt: Akad.  ~Vien, October 8~ 
1868. 

t "On ]3oltzmann's Theorem on the Average Distribution of Energy 
in a System of Material Points." Maxwell's Collected Papers, vol. 5. 
pp. 713-741~ and Camb. Phil. Trans., May 6, 1878. 
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"mot ion ,  will, sooner or later, pass [infinitely near ly*]  
" t h r o u g h  every phase which is consistent with the equation 
" o f  e n e r g y "  (p. 714) and, again (p. 716). 

" I t  appears from the theorem, that  in the ultimate state of  
" t h e  system the average t kinetic energy of two portions 
" o f  the system must be in the ratio of the nmnber  of degrees 
" o f  freedom of those portions. 

"This ,  therefore, must be tile condition of the equality of 
" t empera tu re  of the two portions of the system." 

I have never seen validity in the demonstration :~ on which 
Maxwell founds this statement, and it has always seemed to 
me exceedingly improbable that it can be true. I f  true, it 
would be very wonderful, and most interesting in pure 
mathematical  dynamics. Havin~ been published by Boltz- 
mann and Maxwell it would "be wortl'ly of mos[  serious 
attention, even without consideration of its hearing on 
thermo-dynamics.  But, when we consider its bearing 
oil thermo-dynamics,  and in its first and most obvious appli- 
cation we find it destructive of the kinetic theory of gases, of 
which Maxwell was one of the chief founders, we cannot see 
it ot~herwise than as a cloud on the dynamical  theory of heat 
and light. 

w 19. For  the kinetic theory of gases, let each molecule be 
a cluster of Boscovich atoms. This includes every possibility 
("  dynamical ,"  or "electr ical ,"  or "physical," or " c h e m i c a l " )  
regarding the nature and qualities of a molecule and of all its 
parts. The mutual  forces between the constituent atoms 
must be such that the cluster is in stable equilibrium if given. 
at rest ; which means, that if started from equilibrium with 

* I have inserted these two words as certainly belonging to Maxwell's 
meaning.--K. 

t The average here meant is a time-average through a sufficiently long 
time. 

The mode of proof followed by Maxwell, and its connection with 
antecedent considerations of his own and of Boltzmann, imply, as in- 
cluded in the general theorem, that the average kinetic energy of any 
one of three rectangular components of the motion of the centre of inertia 
of an isolated system, acted upon only by mutual forces between its parts, 
is equal to the average kinetic energy o[ each generalized component of 
motion relatively to the centre of inertia. Consider, for example, as 
"parts of the system " two particles of masses m and m' free to move. 
only in a fixed straight line, and connected to one another by a massless 
sl~ring. The Boltzmann-Maxwell doctrine asserts that ihe average 
kinetic energy of the motion of the inertial centre is equal to the average 
kinetic ener~r of the motion relative to the inertial centre. This is 
included in the wording of Maxwell's statement in the text if, but not 
unless, m=m'. See footnote on w 7 of my paper " On some Test-Cases 
for the Boltzmann-Maxwell D( ctrine regarding Distribution of Energy." 
Prec. Roy. Soc., June 11, 1891. 
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its constituents in any state of relative motion~ no atom will 
fly away from it, provided the total kinetic energy of the 
given initial motion does not exceed some definite limit. A 
gas is a vast assemblage of molecules thus defined, each 
moving freely through space, except when in collision with 
another cluster, and each retaining all its own constituents 
unaltered, or only altered by interchange of similar atoms 
between two clusters in collision. 

w 20. For  simplicity we may suppose that each atom, A, 
has a definite radius of activity, a, and that atoms of different 
kinds, A, A I, have different radii of activity, a, al; such that 
A exercises no force on any other atom, A/, A I~, when the 
distance between their centres is greater than a + a / or a + dt .  
We need no,~ perplex our minds with the inconceivable idea 
o f  " virtue, whether for force or for inertia, residing in a 
mathematical point ~ the centre of the atom; and without 
mental strain we can distinctly believe that the substance 
(the " substratum" of qualities) resides, not in a point, nor 
vaguely through all space, but definitely in the spherical 
volume of space bounded by the spherical surface whose 
radius is the radius of activity of the atom, a-nd whose centre 
is the centre of" the atom. In our intermolecular forces thus 
defined, we have no violation of the old scholastic law, 
"Mat ter  cannot act where it is not," but we explicitly violate 
the other scholastic law, "Two  portions of matter cannot 
simultaneously occupy the same space." We leave to gravi- 
tation, and possibly to electricity (probably not to magnetism), 
~he at present very unpopular idea of action at a distance. 

w We need not now (as in w when we wished to 
keep as near as we could to the old idea of colliding elastic 
globes) suppose the mutual force to become infinite repulsion 
before the centres of two atoms, approaching one another, 
meet. Following Boscovich, we may assume the force to 
vary according to any law of alternate atbraction and repul- 
sion, but without supposing any infinitely great force, whether 
of repulsion or attraction, at any particular distance; but we 
must assume the force to be zero when the centres are coin- 
cident. We may even admit the idea of the centres being 
absolutely coinci~ient, in at all events some cases of a chemical 
combination of two or more atoms; although we might con- 
sider it more probable that in most cases the chemical com- 
bination is a cluster, in which the volumes of the constituent 
atoms overlap without any two centres absolutely coinciding. 

w 22. The word "col l i s ion"  used without definition in w [9 
may now, in virtue of w167 20, 21, be unambiguously defined 

* See Math. and Phys. Papers, vol. iii. arL xcviI. "Moleculm" Consti- 
Sutton of Matter/' w 14. 



])ynamical Theory of Heat and Ligl~t. 13 

thus :  Two atoms are said to be in collision during all the 
time their volumes overlap after coming into contact. They 
necessarily in virtue of inertia separate again, unless some 
third body intervenes with action which causes them to 
remain overlapping; that is to say, causes combination to 
result from collision. Two clusters of atoms are said to be 
in collision when, after being separate, some atom or atoms 
of one cluster come to overlap some atom or atoms of the 
other, in  virtue of inertia the collision must be followed 
either by the two clusters separating, as described in the last 
sentence of w 19, or by some atom o1" atoms of one or both 
systems being sent flying away. This last supposition is a 
matter-of-fhct statement belonging to the magnificent theory 
of dissociation, discovered and worked out by Sainte-(21air 
Deville without any guidance from the kinetic theory of 
gases. In gases approximately fulfilling the. gaseous laws 
(Boyle's and Charles'), two clusters must m general fly 
asunder after collision. Two clusters could not possibly 
remain permanently in combination without at least one atom. 
being sent flying away after collision between two clusters 
with no third body intervening % 

w 23. Iqow for the application of the Boltzmann-Maxwell 
doctrine to the kinetic theory of gases: consider first a 
homogeneous single gas, that is~ a vast assemblage of similar 
clusters of atoms moving and colliding as described in the 
last sentence of w 19; the assemblage being so sparse that 
the time during which each cluster is in collision is very 
short in comparison with  the time during which i~ is unacted 
on by other clusters, and its centre of inertia, therefore, 
moves uniformly in a straight line. I f  there are i atoms in 
each cluster, it has 3i freedmns to move, that is to say~ free- 
doms in three rectangular directions for each atom. The 
Boltzinann-Maxwell doctrine asserts that the mean kinetic 
energies of these 31 motions are all equal, whatever be the 
mutual forces between the atoms. From this, when the 
dm'ations of the collisions are not included in the time- 
averages, it is easy to prove algebraically (with exceptions 
noted below) that the time-average of the kinetic energy of 
the component translational velocity of the inertial centre 1", 
in any direction, is equal to any one of the 3i mean kinetic 
energies asserted to be equal to one another in the preceding 
statement. There are exceptions to the algebraic proof 

See Kelvin's Math. and Phys. Papers, vol. iii. Art. xcv~. w 33. In 
this reference, for scarcely substitute not. 

t This expression I use for brevity to signify the kinetic energy of the 
whole mass ideally collected at the centre of inertia. 
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corresponding to the particular exception referred to in the 
last footnote to w 18 above; but, nevertheless, the general 
Boltzmann-Maxwell doctrine includes the proposition, even 
in those cases in which it is not deducible algebraically from 
the equality of the 31 energies. Thus, without exception, the 
average kinetic energy of any component of the motion of 
the inertial centre is, according to the Boltzmann-Maxwell 

1 
doctrine, equal to 3~ of the whole average kinetic energy of 

the system. This makes the total average energy, potential 
~md kinetic, of the whole motion of the system, translational 
and relative, to be 3i(1 + P) times the mean kinetic energy 
of one component of the motion of the merhal centre, where 
P denotes the ratio of the mean potential energy of the 
relative displacements of the parts to the mean kinetic energy 
of the whole system. Now, according to Clausius' splendid 
and easily proved theorem regardin~ the partition of energy in 
the kinetic theory of gases, the ratio of the difference between 
the two thermal capacities to the constant-volume thermal 
capacity is equal to the ratio of twice a single component of 
the translational energy to the total energy. Hence, if 
according to our usual notation we denote the ratio of the 
thermal capacity, pressure constant, to the thermal capacity, 
volume constant, by k, we have, 

2 
:~i(1 + g)" 

w 24. ~Example 1 . ~ F o r  first and simplest example, consider 
a monatomic gas. We have i - - l ,  and according to our sup- 
position (the supposition generally, perhaps universally, made) 
regarding atoms, we have P----0. Hence, ]~--1=~. 

�9 o f ~ . . ~hls is merely a undamental theorem m the kmehe theory 
of gases for the case of no rotational or vibrational energy of 
the molecule; in which there is no scope either for Clausius' 
theorem or for the Boltzmann-Maxwell doctrine. It is beau- 
tifully illustrated by mercury vapour, a monatomic gas 
according to chemists, for which many years ago Kundt, in 
an admirably designed experiment~ found k--1 to be very 
approximately ~, e- and by the newly discovered gases argon, 
helium, and krypton, for which also k--1 has been found to 
have approximately the same value, by Rayleigh and Ramsay. 
But each of these four gases has a large number of spectrum 
lines, and therefore a large number of vibrational freedoms, 
and therefore, if the Boltzmann-Maxwell doctrine were true, 
k--1 would have some exceedingly small value, such as that 
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shown in the ideal example of w 26 below. On the other 
hand, Clausius' theorem presents no difficulty; it merely 
asserts that k--1 is necessarily less than ~ in each of these 
four cases, as in every case in which there is any rotational 
or vibrational energy whatever; and proves, from the values 
found experimentally for k.-1 in ~he four gases, that in each 
case the total of rotational and vibrational energy is exceed- 
ingly small in comparison with the translational energy. It 
iustifies admirably the chemical doctrine that mercury vapour 
"is practically a monatomic gas, and it proves that argon, 
helimn, and krypton, are also practically monatomie, though 
none of these gases has hitherto shown any chemical afl3nity 
or action of any kind fl'om which chemists could draw any 
such conclusion. 

But Clausius' theorem, taken in connection wi~h Stokes' 
and Kirchhoff's dynamics of spectrum analysis, throws a new 
light on what we are now calling a "practically monatomic 
gas." It  shows that, unless we admit that the atom can be 
set into rotation or vibration by mutual collisions (a most 
unacceptable hypothesis), it must have satellites connected 
with it (or ether condensed into it or around i t )and kept, 
by the collisions, in motion relatively to it with total energy 
exceedingly small in comparison with the translatioual 
energy of the whole system of atom and satellites. The 
satellites must in all probability be of exceedingly small mass 
in comparison with that of the chief atom. Can they be the 
" ions"  by which J.  J.  Thomson explains the electric con- 
ductivity induced in air and other gases by ultra-violet light, 
RSntgen rays, and Becquerel rays ? 

Finally, it is interesting to remark that all the values of 
k--1  found by Rayleigh and Ramsay are somewhat less than 
~; argon "64, "61; helium "652; krypton "666. I f  the devia- 
tion from "667 were accidental they would probably have 
been some in defect and some in excess. 

Example 2.--As a next simplest example let i=2, and as 
very simplest case let the two atoms be in stable equili- 

brium when concentric, and be infinitely nearly concentric 
when the clusters move about, constituting a homogeneous 
gas. This supposition makes P=�89 because the average 
potential energy is equal to the average kinetic enerzy in 
simple harmonic vibrations; and in our presen~ ease half the 
whole kinetic energy, according to the Boltzmann-Maxwell 
doctrine, is vibrational, the other half being translational. 
We find k - - l=? t= ' 2222 .  

Example 3.--Let  i = 2 ;  let there be stable equilibrium, 
with the centres C, C' of the two atoms at a finite distance a 
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asunder, and let the atoms be always very nearly at this 
distance asunder when the clusters are not in collision. The 
relative motions of the two atoms will be according to three 
freedoms, one vibrational, consisting of very small shorfen- 
ings and lengthenings of the distance C C t, and two rotational, 
eonsisting of rotations round one or other of two lines per- 
pendieular to each other and perpendicular to C C r through 
the inertial centre. With these eonditions and limitations, 
and with the supposition that half the average kinetic energy 
of the rotation is comparable with the average kinetic energy 
of the vibrations, or exactly equal to it as according to the 
]3oltzmann-Maxwell doctrine, it is easily proved that in 
rotation the excess of C C I above the equilibrium distance a, 
due to centrifugal force, must be exceedingly small in com- 
parison with the maximum value of G ( V - a  due to the 
vibration. Hence the average potential energy of the rota- 
tion is negligible in comparison with the potential energy of 
the vibration. Hence, of the three freedoms for relative 
motion there is only oue contributory to P, and therefore we 
have P = ~ .  Thus we find k--l=TZ='2857. 

The best way of experimentally determining the ratio of 
the two thermal capacities for any gas is by comparison 
between the observed and the Newtonian velocities of sound. 
It  has thus been ascertained that, at ordinary temperatures 
and pressures, k--1 differs but little from "406 tbr common 
air, which is a mixture of the two gases nitrogen and oxygen, 
each diatomic according to modern chelnieal theory; and the 
greatest value that the Boltzmann-Maxwell doctrine can give 
for a diatomie gas is the "2857 of Ex. 3. This notable dis- 
crepanee tram observation suffices to absolutely disprove the 
Boltzmann-Maxwell doctrine. What is really established in 
respect to partition of energy is what Clausius' theorem tells 
us (w 23 above). We find, as a result of observation and 
true theory, that the average kinetic energy of translation of 
the molecules of common air is "609 of the total energy, 
potential and kinetic, of the relative motion of the constitu- 
ents of the molecules. 

w 25. The method of treatment of Ex. 3 above, carried out 
for a cluster of any number of atmns greater than two not in 
one line, j +  2 atoms, let us say, shows~ that there are three 
translational freedoms; three rotational freedoms, relatively 
to axes through the inertial centre; and 32" vibrational free- 

' 1 
doms. Hence we have P = T+2 ,)), and we find k--1 =- 

3(~-+j)" 
The values of k - 1  thus calculated for a triafomic and tetra- 
tomic gas, and calculated as above in Ex. 3 for a diatomic: 
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gas, are shown in the following table, and compared with the 
results of observation for several sueh gases: 

(~aS. 

Air 

i5~, 
c6 
NO 
COo 
N.2() 
NH a 

Values of k--  1. 

According to the By 
B.-M. doctrine. Observation. 

= '2857 

'i = ' l i ' l l  

"406 
"40 
"41 
~32 
"39 
'39 
"30 
"331 
"311 

It is interesting to see how the dynamics of Clausius' 
theorem is verified by the results of observation shown in the 
table. The values of k--1 tbr all the gases are less than ~, 
as they must be when there is any appreciab]e energy of 
rotation or vibration in the molecule. They are different for 
diili~rent diatomic gases; ranging from "~1 for oxygen to "32 
for chlorine, which is quite as might be expected, when we 
consider that the laws of force between the two atoms may 
(lifter largely for the different kinds of atoms. The values of 
k--1 are, on the whole, smaller for the tetratomic and triato- 
mic than for the diatomie gases, as might be expected fronl 
consideration of Clausius' principle. I t  is probable that the 
differences of k--1 for the different diatomic gases are real, 
although there is considerable uncertainty with regard to the 
observational results for all or some of the gases other than 
air. It  is certain that the discrepancies trom the values, 
calculated according to the Boltzmann-Maxwell doctrin% are 
real and great ; and that in each case, diatomic, triatomic, 
and tetratomic, the doctrine gives a value for k--1 much 
smaller than the truth. 

w 26. But, in reality, the Boltzmann-Maxwell doctrine errs 
enormously more than is shown in the preceding table. 
Spectrum analysis showing vast numbers of lines for each 
gas makes it certain that the numbers of freedoms of the 
constituents of each molecule is enormously greater than 
those which we have been counting, and therefore that unless 
we attribute vibratile quality to each individual atoln~ the 

_Phil. May. S. 6. Vol. "2. No. 7. July 1901. C 
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molecule of every one of the ordinary gases must have "t 
vastly greater number of atoms in its constitutlo~ than those 
hitherto reckoned in regular chemical doctrine. Suppose, 
for example, there are forty-one atoms in the molecule of 
any particular gas; if" the doctrine were true, we should bare 
j = 3 9 .  Hence there are 117 vibrational freedoms, so tha~ 
there might be 117 visible lines in the spectrum of the gas; 

1 
and we have k - - 1 - - 1 2 0 - - ' 0 0 8 3 .  There is, in fact, no 

possibility of reconciling the Boltzmann-Maxwell doctrine 
with the truth regarding the specific heats of gases. 

w 27. I t  is, however, no~ quite possible to re.% contented 
with the mathematical verdict not proven, and the experi- 
mental verdict not true, in respect to the Bol~zm~mn-Maxwell 
doctrine. I have always fel~ that it should be mathemati- 
cally tested by the consideration of some pargicular case. 
Even if the theorem were true, stated as it was somewhat 
vaguely, and in such general terms that great difficulty has 
been felt as to what it is really meant to express, it would be 
very desirable to see even one other simple case, besi3es that 
original one of Waterston's, clearly stated and tested by pure 
anathematics. Ten years ago ~', I suggested a number of test- 
cases, some of which have been courteously considered by 
Boltzmann ; but no demonstration either of the truth or 
untruth of the doctrine as applied to any one of them has 
]fitherto been given. A year laLer, I suggested what seemed 
to me a decisive test-case disproving the doctrine; but my 
statement was quickly and justly criticised by Bol~zmann 
and Poinear6; and more recently Lord Rayle ight  has shown 
very clearly that my simple test-case was quite indecisive. 
This last article of Rayleigh's has led me to resume the 
consideration os several classes of dynamical problems, which 
had occupied me more or less at various times during the last 
twenty years, each presenting exceedingly interesting features 
in connection with the double question: Is this a case which 
admits of the application of the Boltzmann-Maxwell doctrine; 
and if so, is the doctrine true for it ? 

w 28. Premising that the mean kinetic energies wi~h which 
the Boltzmann-Maxwell doctrine is concerned are time- 
integrals of energies divided by totals of the times, we 
may conveniently divide the whole cla~s of problems, with 

* ' On some Test Cases for the Maxwell-Boltzmann Doctrine regarding 
Distribution of Energy.' Prec. Roy. Soc., June 11, 1891. 

J- Phil. Mag., eel. x-xxiii. 1892,, p. 356. "Remarks on Maxweli's In- 
vestigation respecting Doltzmann s ~ heo~em." 
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reference to which the doctrine comes into question~ into two 
classes. 

(;lass L Those in which the velocities coirsidered are either 
constant or only vary suddenly--that is to say, in infinitely 
small times--or in times so short that they may be omitted 
tu the time-integration. To this class belong: 

(a) The original Waterston-Maxwel] case and the collisions 
of ideal rigid bodies of any shape~ according to the assumed 
law that the translatory and rotatory motions lose no energy 
in the collisions. 

(b) The frictionless motion of one or nlore [)articles con- 
strained to remain on a surface of any shape, this surface 
being either closed (commonly called finite though really 
endless), or being a finite area of plane or curved surface, 
bounded like a billiard-table, by a walt or walls, fi'om which 
impinging particles are reflected at angles equal to the angles 
of incidence. 

(c) A closed surface, with non-vibratory particles moving 
within it fi'eely except during impactsoof particles against 
one another or against the bounding surtace, 

(d) Cases such as (a), (b), or (c), with impacts against 
boundaries and mutual impacts between particles, softened 
by the supposition of finite forces during the impacts, with 
only the condition that the durations of the impacts are so 
short as to be practically negligible in comparison with the 
durations of free paths. 

Class II. Cases in which the velocities of some of the 
particles concerned sometimes vary gradually ; so gradually 
that the times during which they vary must be included in 
the time-integration. To this class belong examples such as 
(d) of Class I. with durations of impacts not negligible in the 
time-integration. 

w 29. Consider first Class X. (b) with a finite closed surface 
as the field of motion and a single particle moving on it. ~If 
a particle is given, moving in any direction through any 
point I of |he field, it will go on for ever along one deter- 
minate geodetic line. The question that first occurs is, Does 
the motion fulfil Maxwell's condition (see w 18 above) ? that 
is to say, for this case, I f  we go along the geodetic line long 
enough, shall we pass infinitely nearly to any point Q what- 
ever, including I, of the suri~ce an infinitely great number 
of times in all directions? This question cannot be answered 
iu the affirmative without reservation. For example, if the 
surface be exactly an ellipsoid it must be answered in the 
negative, as is proved in the ibllowing w167 30, 31, 32. 

C2 
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w 30. Let AA', BB', CC ~, be the ends of the greatest, mean, 
ans least diameters of an ellipsoid. Let Us U.~ U~ U~ be the 
umbilics in the ares AC, CA r, A/C ', CrA. A l(nown theorem 
in the geometry of the ellipsoid ~ells us, that every geodetic 
through U1 passes ~hrouffh U3, and ever,; geodetic through 
U~ passes through U4. ~This statement regarding geodetic 
lines on an ellipsoid of" three unequal axes is illustrated by 
tlg. 1, a diagram showing for the extreme case in which the 
shortest axis is zero, the exact construction of a geodetic 
through U, which is a focus of the ellipse shown in the 
diagram. U s, C t, U~ being infinitely near to U~, C, U, 
respectively are indicated by double letters at the same points. 
Starting from U, draw the geodetic UsQU3 ; the two parts 

F~g. 1. 

, Q 

of which U1Q and QUs are straight lines. I t  is interesting 
to remark that, ill whatever direction we start from U,, if we 
continue the geodetic through U3, and on through U~ again 
and so on endlessly, as indicated in the diagram by the 
straight lines U1QI~3Q'UsQ"UsQ'", and so on, we come very" 
quickly to lines approaching successively more and more 
nearly to coincidence with the major axis. At every point 
where the path strikes the ellipse it is reflected at equal 
angles to the tangent. The construction is most easily made 
by making the angle between the reflected path and a line to 
one focus, equal to the angle between the incident path and 
a line to the other focus. 

w 31. Returning now to the ellipsoid : - -From any point I, 
between U t and U~ draw the geodetic IQ, and produce it 
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through Q on the ellipsoidal surface. I t  mu.~t cut the arc 
A~C~A at some point between Us and U4, and, if continued 
on and on, it must cut the ellipse ACA~C'A successively 
between U1 and U2, or between U3 and U4 ; never between 
U2 and U3, or U~ and U1. This, fbr the extreme ease of 
the smallest axis zero, is illustrated by the path IQQ~Q'~Q ',l 

, i v  v Q in fig. 2. 
w 32. I f  now, on the other hand~ we commence a geodetic 

through any point J between U1 and U4, or between U: and 
Us, it will never cut the principal section containing the 
umbilicus, either between U1 and U: or between Us and U4. 
This~ for the extreme case of CCt=0,  is illustrated in fig. ,~. 

Fig. 2. 

q 

A A' 

Q l u  

w 33. It  seems not improbable that if the figure deviates hy 
ever so little from being exactly ellipsoidal, Maxwell's condi- 
tion might be fulfilled. I t  seems indeed quite probable that 
Maxwell's condition (see w167 13, 29, above) is fulfilled by a 
geodetic on a closed surface of any shape in general, and that 
exceptional cases, in which the question of w is to be 
answered in the negative, are merely particular surfaces of 
definite shapes, infinitesimal deviations from which will allow 
the question to be answered in the affirmative. 

w 34. Now with an affirmative answer to the question--is 
Maxwell's condition fulfilled ?--what  does the Boltzmann- 
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of tile doctrh~e as ~nterpreted from prcv;ous wHtiags both of 
Boltzmann and Maxwell, and subsequent writings of Boltz- 
mann, and of Rayleigh*~ the most recent supporter of the 
doctrine, is that a single geodetic drawn long enough will no,t 
only fulfil Maxwel['s condition of' passing infinitely near to 
every point of the surface in all directions, but will pass with 
equal frequencies in all directions ; and as many times withb~ 
a certain infinitesimal distance +$  of any one point P as of 
any other point P'anywhere over the whole surfhce. This~if 
trn% would be an exceedingly interesting theorem. 

w 35. I have made many efforts to test it for the case in 
which the closed surface is reduced to a plane with other 
houndaries than an exact ellipse (for which, as we have ~en 

Fig. 3. 
Q= 

Qv,J 

in w 30, 31, 32, the investigation fails through tile non- 
fiflfilment of Maxwell's preliminary condition). Every such 
case gives, as we have seen, straight lines drawn across the 
enclosed area turned on meeting the boundary, according to 
the law of equal angles of incidence and reflection~ which 
corresponds also to the ease of an ideal perfectly smooth: 
non-rotating billiard-ball moving in straigh~ lines except 
when it strikes the boundary of the table ; the botmdary 
being of any shape whatever, instead of the ordinary r ee f  
angular boundary of an ordinary billiard-tabl% and being 
perfectly elastic. An interesting illustration, easily seen 

* Phil. Mag., January lflO0. 
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through a large lecture-hall, is had by taking a thin wooden 
board, cut to any chosen shape, with the corner edges of the 
boundary smoothly" rounded, and winding a stout black cord 
round and round it many times, beginning with one end fixed 
to any point, I, of the board. If the pressure of the cord on 
the edges ~'ere perfectly frietionless, the cord would, aL ever)- 
turn round the border, place itself so as to fulfil the law of 
equal angles of incidence and reflection, modified in virLue 
of the thickness of the board. For stability, it would be 
necessary $o fix points of the cord to the board by staples 
pushed in over it at sufficiently frequent intervals, care being 
taken that at no point is the cord disturbed from its proper 
straight line by the staple. [Boards o~ a considerable variety 

Fig. 4. 

of shape with cords thus wound on ~hem were shown as 
illustrations of the lecture.~ 

w 36. A very easy way of drawing accurately the path of ~r 
particle moving in a plane and retlec~ed from a bounding 
wall of any shape, provided only that it is not concave 
externally in any part, is furnished by a somewhat interesting 
kinematical method illustrated by the accompanying diagram 
(fig. 4). It is easily realized by using two equal and similar 
pieces of board, cut to any desired figure, one of them being 
turned upside down relatively to ~he other, so that when the 
two are placed together with corresponding points in contact, 
each is the image of the other relative to the plane of contact 
regarded as a mirror. Sufl]ciently close corresponding points 
should be accurately marked on the boundaries of the two 
figures~ and this allows great accuracy to be obtained in the 
drawing of the free path after each reflection, The diagram 
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shows consecutive free paths 74"6---32"9 given, and "~2'9-- 
54"7, found by producing 74"6--32"9 through the point of 
contact. The process involves the exact measurement of the 
length ( /)~say to three significant figures--and its inclina- 
tion (tg) to a chosen line of reference XX'. The summations 
X 1 cos 2t~ and X l sin 2~ give, as explained below, the 
difference of time-integrals of kinetic energies of component 
motions parallel and perpendicul,~r respectively to XX I, and 
parallel and perpendicular respectively to K K  r, inclined at 
45 ~ to X X  I. From these differences we find (by a pro- 
cedure equivalent to that of finding the principal axes of an 
ellipse) two lines at right angles to one another, such that 
the time-integrals of the components of velocity parallel to 

Fig. 5. 

P ,C 

k 

R 

them are respectivelyogreater than and less than those of the 
components parallel to any other line. [This process was 
illustrated by models in the leetureJ 

w 37. Virtually the same process as this, applied to the case 
of a scalene triangle ABC (in which B C = 2 0  centimetres 
and the angles A = 9 7  ~ B=29~ C=-53~ was worked 
out in the Royal Institution during the fortnight after the 
lecture, by Mr. Anderson, with very interesting results. The 
length -or' each free path (t)~ and its inclination to BC (0), 
reckoned acute or obtuse according to the indications in the 
diagram (fig. 5), were measured to the nearest millimetre and 
the nearest integral degree. The first free path was drawn 
at random, and the continuation, through 599 reflections (in 
all 600 paths), was drawn in a manner illustrated by fig. 5, 
which shows, for example, a path PQ on one triangle con- 
finued to QR on the other. The two when folded together 
round the line AB show a path PQ, continued on QR after 
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reflection. For  each path 1 cos 20 and l sin 20 were calcu- 
lated and entered in tables with the proper algebraic signs. 
Thus, for the whole 600 paths, the following summations 
were found : - -  

s  El ccs 20=  + 128"8; s  20=  --201"9. 

~emark,  now, if the mass of the moving particle is 27 and 
the velocity one centimetre per second, Z1 cos 20 is the 
excess of tim time-integral of kinetic energy of component 
motion parallel to ]3(J ~lbove that of component motion 
perpendicular to BC, and s 1 sin 2/9 is the excess of the time- 
integral of kinetic energy of component motion perpendicular 
to K K  r above that of component motion parallel to K K ' ;  
K K '  being inclined at 45 ~ to ]3C in the direction shown in 
the diagram. Hence the positive value of El cos 20 indicates 
a preponderance of kinetic energy due to component motion 
parallel to ]3C above that of component motion perpendicular 
to B C ;  and the negative sign of Z/sin 20 shows prepond- 
erance of kinetic energy of eomponen~ motion parallel to 
l~K ~, above that of component motion perpendieular to K K  r. 
Deducing a determination of two axes at right ang!es to each 
other, eorresponding respeefively to maximum and minimmn 
kinetic energies, we find that LL  ', being inelined to K K  I in the 

j . _1128"8 
direction shown, at an angle = ~ mn 201@ is what we may 

(;all the axis of maximum energy~ and a line perpendicular to 
LL '  the axis of minimum energy;  and the excess of the 
time-integral of the energy of component velocity parallel to 
~LL ~ exceeds that of the component perpendicular to LL '  by 
239"4~being ~/128"~V+201"~L This is 7"25 per cent. of the 
total ot~ s t which is the time-integral of the total energy. 
Thus, in our result~ we find a very nolable deviation from the 
Boltzmann-Maxwell doctrine, which asserts for the present 
case that the time-integrals of the component kinetic energies 
are the same for all directions of the component. The 
percentage which we have found is not ver.)~ large;  and, 
most probably, summations for several successive 600 flights 
would present considerable differences, both of the amount 
of the deviation from equality and the direction of the axes 
of maximmn and minimum energy. Still, 1 think there is a 
strong probability that the disproof of the Boltzmann-Maxwell 
doctrine is genuine, and the discrepanee is somewhat approx- 
imately of the amount and direction indicated. I am sup- 
ported in this view by scrutinizing the thirty sums for 
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successive sets of twenty flights : thus I find El cos "20 to be 
positive for eighteen out of thirty, and Z1 sin 20 to be nega- 
tive for nineteen out of the thirty. 

w 38. A very interesting test-case is represented in the 
accompanying diagram~ (fig. 6)--a circular boundary of semi- 

Fig. 6. 

circular corrugations. In this case it is obvious from the 
symmetry that the time-integral of kinetic energy of com- 
ponent motion parallel to any straight line must, in the 
long run, be equal to that parallel to any other. But the 
Boltzmann-Maxwell doctrine asserts, that the tlme-integrals 
of the kinetic energies of the two components, radial and 
transversal, according to polar coordinates, would be equal. 
To test this, I have taken the case of an infinite number of 
the semicircular corrugations, so thai ia the time-integral it 
is not necessary to include the limes between successive 
impacts of the particle on any one of the semicircles. In 
this case the geometrical constructlon would, of" course, l~ail 
to show the precise point Q at which the free path would 
cut the diameter AB of the semicircular hollow to which it is 
approaching ; and I have evaded the difficulty in a manner 
thoroughly suitable for thermodynamic application such as 
the kinetic theory of gases. I arranged to draw lots for 
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out of the 199 points dividing AB into 200 equal parts. 
This was done by taking 100 cards*, 0, i . . . . .  98, 99, to 
represent distances from the middle point, and, by the toss of 
a coin, determining on which side of the middle point it was 
to be (plus or minus for head or tail, frequently changed to 
avoid possibility of error by bias). The draw for one of the 
hundred numbers (0 . . . .  99) was taken after very thorough 
shuffling of the cards in each case. The point of entry having 
been found, a large-scale geometrical construction was used 
to determine the successive points of impact and tile inclina- 
tion 0 of the emergent path to the diameter AB. The inclina- 
tion of the entering path to the diameter of the semicircular 
hollow struck at the elld of the flight, has the s,nme value (~. 
] f  we call the diameter ot" the large circle unity, the length 
of each flight is sin 0. Hence, if the velocity is nnity and 
the mass of the particle 2, the time-integral of the whole 
kinetic energy is sin 0 ; and it is easy to prove that the time- 
integrals of' the components of the velocity, along and per- 
pendicular to the line from each point of the path to 
the centre of the large circle, are respectively 0cost?, amt 
sin 0--  0 cos 0. The excess of the latter above the ibrmer is 
sin 0 - -20  cos 0. By summation for 143 flights we have 
tbund, 

Esln0----121"3 ; 2Et~ cos 0=108"3 ; 
whence, 

sin 0--  2E0 cos 0 = 13"0. 

This is a notable deviation from the Boltzmann-Maxwell 
doctrine, which makes Z ( s i n S - - 0  cos t~)equal to Z0 cos 0. 
We have found the former to exceed the latter by a difference 
which amounts to 10"7 of the whole Z sin 0. 

Out of fourteen sets of ten flights, I find that the time- 
integral of the transverse component is less than half the 
whole in twelve sets, and greater in only two. This seems to 
prove beyond doubt that the deviation from the Boltzmann- 
Maxwell doctrine is genuine ; and that the time-integral of 
the transverse component is certainly smaller than the time- 
integral of the radial component. 

I had tried numbered billets (small squares of paper) drawn from a 
bowl, but found this very unsatisfactory. The best mixing we could 
make in the bowl seemed to bo quite insufficient to secure eqt~al chances 
for all the billets. Full sized cards like ordinary playing-cards, well 
shuffled, seemed to give a very fairly equal chance to every card. Even 
with the full-sized cards, electric attraction sometimes intervenes and 
causes two of them to stick together. In using one's fingers to mix dry 
billets of card, or of paper, in a bowl, very considerable disturbance ma:y. 
be expected from electrification. 
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w 39. I t  is interesting to remark that our 
present result is applicable (see w 38 above) to 
tile motion of a particle, flying about in an 
enclosed space, of the same shape as the surface 
of a marlin-spike (fig. 7). Symmetry shows, 
that the axes of maximum or minimum kinetic 
energy must be in the direction of the middle 
line of the length of the figure and perpen- 
dicular to it. Our conclusion is that the time- 
integral of kinetic energy is maximum for the 
longitudinal component and minimum for the 
transverse. In the series of flighLs, corre- 
sponding to the 143 of fig. 6, which we have 
investigated, the nmnber of flights is of course 
many times 143 in fig. 7, because of the 
reflections at the straight sides of the marlin- 
spike. I t  will be understood, of course, that 
we are considering merely motion in one plane 
through the axis of the marlin-spike. 

w 40. The most difficult and seriously trouble- 
some statistical investigation in respect to the 
partition of energy which I have hitherto 
attempted, has been to find the proportions of 
translational and rotational energies in various 
cases, in each of which a rotator experiences 
multitudinous reflections at two fixed parallel 
planes between which it moves, or at one plane 
to which it is brought back bv a constant force 
through its centre of inerti% or by a force 
varying directly as the distance from the plane. 
Two different rotators were considered, one of 
them co~lsisting of two equal masses, fixed af  
the ends of a rigid ma~sless rod, and each 
particle reflected on striking either of the 
planes ; the other consisting of two masses~ 1 
and 100~ fixed at the ends of a rigid massless 
rod, the smaller mass passing freely across the 
plane without experiencing any force, while 
the greater is reflected every time it strikes. 
The second rotator may be described, in some 
respects more simply, as a hard massless ball 
having a mass = 1 fixed anywhere eccentric- 
ally within it, and another mass = 100 fixed at 
its centre. I t  may be called, for  brevity, a 
biassed ball. 
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w 41. In every case of a rotator whose rotation is changed 
by an impact, a'transcendental problem of pure kinematics 
essentially occurs to find the time and configuration of the 
first impact ; and another such problem to find if there is a 
second impact, and, if so, to determine it. Chattering col- 
lisions of one, two, three, four, five, or more impacts, are 
essentially liable to occur, even to the extreme case of an 
infinite number of impacts and a collision consisting virtually 
of a gradually varying finite pressure. Three is the greatest 
nmnber of impacts we have found in any of' ohr calculations. 
The first of these transcendental problems, occurring essen- 
tially in every case, consists in finding the smallest value of 0 
which satisfies the equation 

7 ( i - -  sin t~) ; 0 - - i =  

where ~ is the angular velocity of the rotator before collision; 
a is the length of a certain rotating arm ; i its inclination to 
the reflecting plane at the instant when its centre of inertia 
crosses a plane F, parallel to the reflecting plane and distant a 
from it ; and v is the velocity of the centre of inertia of the 
rotator. This equation is, in general, very easily solved by 
calculation (trial and error), but more quickly by an obvious 
kinematic method, the simplest form of which is a rolling 
circle carrying an arm of adjustable length. In our earliest 
work we performed the solution arithmetically, after that 
kinematically. I f  the distance between the two parallel 
planes is moderate in comparison with 2a (the effective dia- 
meter of the rotator), i for the beginning of the collision with 
one plane has to be calculated from the end of the preceding 
collision against the other pIane by a transcendental equation, 
on the same principle as that which we have just  been con- 
sidering. But I have supposed the distance between the two 
planes to be very great, practically infinite, in comparison 
with 2a, and we have theretbre found i by lottery for each 
collision, using 180 cards corresponding to 180 ~ of angle. In 
the case of the biassed globe, different equally probable 
values of i through a range of 360 ~ was required, and we 
found them by drawing from the pack of 180 cards and tossing 
a coin for plus or minus. 

w 42. Summation for 110 ~tights of the rotat, or, consisting 
of two equal masses, gave as the time-integral of the whole 
energy, 200'03, and an excess of rotatory above translatorv, 
42"05. This is just "21 per cent. of the whole ; a large deviation 
from the Boltzmam:-Maxwell doctrine, which makes the time- 
integrals of translatory and rotatory energies equal. 
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w 43. In the solution for the biassed ball (masses 1 and 100) 
we found great irregularities due to " r u n s  of l u c k "  in the 
toss for plus or minus, especially wtmn there was a succession 
of five or six pluses or five or six minuses. We therefore, 
after calculating a sequence of 200 flights with angles each 
determined by lottery, calculated a second sequence of 200 
flights with the equally probable set of angles given by the 
same numbers with altered signs. The summation for the 
whole 400 gave 555"55 as the time-integral of the whole 
energy, and s excess, 82"5, of the time-lntegral of the 
translator35 over the time-integral of the rotatory energy. 
This is nearly 15 per cent. We cannot, however, feel great 
confidence in this result, because the first set of 200 made 
the translatory energy less than the rotatory energy by ~t 
small percentage (2'3) of the whole, while the second 200 
gave an excess of translatory over rotatory amounting to 
35"9 l~er cent. of the whole. 

w 44. _All our examples considered in detail or worked out, 
hitherto, belong to Class I. of w 28. Asa  first example of 
Class H. ,  consider a ease merging into the geodetic line on a 
closed surface S. instead of the point being constrained to 
remain on the surface, let it be under the influence of a field 
of three, such that it is attracted towards the surface with a 
fioite force, if it is placed anywhere very near the surface on 
either side of it, so lhat if the particle be placed on S and 
projected perpendicularly to it, either inwards or outwards, 
it will be brought hack before it goes farther from the surface 
than a distance ]~, small in comparison with the shortest radius 
of curvature of any par ro t  the surface. The Boltzmann- 
Max~vell doctrine asserts that the time-integral of kinetic 
energy of component motion nornml to the surface, would be 
equal to tmlf the kinetic energy of component motion at right 
angles to the normal; b 3 normal ~eing meant a straight line 
drawn from the actual position o f  the point at any lime per- 
[zendicular to the nearest part of the surihce S. This, it" true, 
would be a very remarkable pro~osition. I f  h is infinitely 
small, we have simply the mathematic.~l condition of constraint 
to remain on the surface, and the path of the particle is exactly 
a geodetic line. I f  the force towards S is zero, when the 
distance on either side of S is -4-h, we have the case of a 
particle placed between two guiding surfaces with a very 
small distance, 2h, between them. ]f  S, and therefore 
each of the guiding surfaces, is in every normal section 
convex outwards, and if the particle is placed on the outer 
~uide-surface, and projected in any direction in it, with 
any velocity, great or smalP, it will remain on that guide- 
surface for ever, and travel along a geodetic" line. I f  now 
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it be deflected very slightly from motion in that sufface~ 
so that it will strike against tho inner guide-surface, we may 
be quite ready to learn, that the energy of knocking about 
between the two surfaces, will grow up from something very 
small in the beginning, till, in the long run, its time-integral 
is comparable with the time-integral of the energy of coin- 
ponent motion parallel to the tangent plane of either surface. 
But  will its ultimate value be exactly half that of the tan- 

~ ential energy, as the doctrine tells us it would be ? We are, 
mwever, now back to Class I . ;  we should have kept to 

Class IL,  by making the normal force on the particle always 
finite, however great. 

w 45. Very interesting cases of Class II., w 28, occur to us 
readily in connexion with the cases of Class I. worked out iu 
w167 38, 41, 42, 43. 

w 46. Let  the radius of the large circle in w 38 become 
infinitely great : we have now a plane F (floor) with semi- 
circular cylindric hollows, or semicircular hollows as we shall 
say for brevity; the motion being confined to one plane per- 
peTndicular to ~F, and to the edges of the hollows. For deft- 
niteness we shall take for F the plane of the edges of the 
hollows. Instead now of a particle after collision flying 
aloug the chord of the circle of w 38, it would go on for ever 
in a straight line. To bring it back to the plane F, let it be 
acted on either (a) by a force towards the plane in simple 
proportion to the distance, or (B) by a constant force. This 
latter supposition (/3) presents to us the ver intere~tin y . g case 
of an elastic ball bouncing from a corrugated floor, and 
describing gravitational parabolas in its successive flights, the 
durations of the different flights being in simple proportion to 
the component of velocity perpendicular to the plane F. The 
supposition (a) is purely ideal ; but it is interesting because 
it gives a half curve of sines for each flight, and makes the 
times of flight from F after a collision and back again to F 
the same for all the flizhts, wha|ever be the inclination ou 
leaving the floor and returning to it. The supposition (j3) is 
illustrated in fig. 8, with only the variation that the corru- 
gations are convex instead of concave, and that two vertical 
planes are fixed to reflect back the particle, instead of allowing 
it to travel indefinitely, either to right or to left. 

w 47. Let  the rotator of w167 41 to 4:3, instead of bouncing 
to and fro between two parallel planes, impinge only on one 
plane F, and let it. be brought back. by. a force through= its 
(.,entre of inertia, either (a) varying m simple proportion to 
the distance of the centre of inertia from F,  or (/~) constant. 
Here, as in w 46, the times of flight in case (=) are all the same, 
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:rod in (~) they are in simple proportion to the velocity of its 
centre of inertia when it leaves F or returns to it. 

Fi B. 8. 

-�9 

\ \  
'\ 

\ 

w 48. In the cases of w167 46, 47, we have to consider the 
time-integral for each flight of the kinetic energy of the 
component velocity of the particle perpendicular to F~ and of 
the ~ whole velocity of the centre of inertia of the rotator~ 



in  w 4 7 (  

we have 
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which is itself perpendicular to F. I f  q denotes the velocity 
perpendicular to F of the particle, or of the centre of inertia 
of the rotator, at the instants of crossing F at the beginning 
and end of the flight, and if 2 denotes the mass of the particle 
or of the rotator so that the kinetic energy is the same as the 
square of the velocity~ the time-integral is in case (a) ~q~T 
and in case (2)�89 the time of the flight being denoted 
in each case b y T .  In both (a) and (/3), 846, if we call 1 
the velocity of the particle, which is always the same, we have 
q2=sin~ 0, and the other component of the energy is cos ~ 0. 
In  w 47 it is convenient to call the total energy l ; and thus 
1 - -q  2 is the total rotational energy, which is constant 
throughout the flight. Hence, remembering that the times 
of flight are all the same in case (a) and are proportional to 
the value of q in case (/~); in case (a), whether of w 46 or 

47. the time-intearals of" the kinetic energies to be comuared 
are as {Zq 2 to Z(1--q~), and in case {~) they are as ~Zq' 
and Zq (1-- q~). 

Hence with the following no ta f ion~  

~Time-integral of kinetic energy perpendicular to F , = ~  r 
In 8 46 (_ , ,, , parallel to F, = U 

. translatory e n e r g y = V ,  
,, rotatory . = R. 

f E('~qe--1) in case (a), 
v - u  = X ( 1 - � 8 9 1 6 2  

= " 

v - a  j -  " 
V + R  ] _  X(~q3--q) " (B). 

w 49. By the processes described above, q was calculated 
for the single particle and corrugated floor (8 46), and for 
the rotator of two equal masses each impinging on a fixed 
plane (w167 41, 42), and for the biassed ball (central and 
eccentric masses 100 and 1 respectively, 88 41, 43). Taking 

2 8 these values of q, summing q, q ,  and q for all the flights, and 
using the results in 8 48, we find the ibllowing six results : 

Phil. Mat. S. 6. Vol. 2. No. 7. July 1901. D 
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Single particle bounding from corrugated floor (semicircular 
hollows), 143 flights : - -  

V - U  ff = + ' 1 9 7  for isochronous shnJsoidal flights. 
V + U- ~_ ----- + "136 for gravitational parabolic ,, 

Rotator of two equal masses, 110 flights : - -  

V - - R  ( = - - ' 1 7 9  for isochrouous sinusoidal flights. 
V + R -- '150 for gravitational parabolic ,, 

Biassed ball, 400 flights : - -  

V - - R  f = + "025 for isochronous shmsoidal flights. 
V + R / = - ' 0 1 4  for gravitational parabolic ,, 

The smallness of the deviation of the last two results fi'om 
what the Boltzmann-Maxwell doctrine makes them, is very 
remarkable when we compare it with the 15 per cent. which 
we have found (w 43 above) for the biassed ball bounding free 
from force, to and fro between two parallel planes. 

w 50. The last case of partition of energy which we have 
worked out statistically, relates to an impactual problem 
belonging partly to Class I., w 28, and partly to Class II .  
I t  was designed as a nearer approach to practical application 
in thermodynamics than any of those hitherto described. I t  
is, in ihct, a one-dimensional illustration of the kinetic theory 
of gases. Suppose a row of a vast number of atoms, of equal 
masses, to be allowed freedom to move only in a straight line 
between fixed bounding planes L and K. Let P the atom 
next K be caged between it and a parallel plane (~, at a 
distance from it very small in comparison with the average 
of the free paths of the other particles ; and let Q, the atom 
next to P, be perfectly free to cross the cage-front C, without 
experiencing force from it. Thus, while Q gets freely into 
the cage to strike P, P cannot follow it out beyond the cage- 
front. The atoms being all equal, every simple impact would 
produce merely an interchange of velocities between the 
colliding atoms, and no new velocity could be introduced, if 
the atmns were perfectly hard (w 16 above), because this 
implies that no three can be in collision at the same time. 
[ do not, however, limit the present investigation to perfectly 
hard atoms. But, to simplify our calculations, we shall 
suppose P and Q to be infinitely hard. All the other 
atoms we shall suppose to h~ve the property defined in w 2l  
:tbove. They may pass through one another in a simple 
,ollisiou, and go asunder each with its previous velocity 
mlaltered, if the differential velocity be sufficiently o'reat ; 
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they must recoil from one another with interchanged veloci- 
ties if the initial differential velocity was not great enough to 
cause them to go through one another. Fresh velocities will 
generally be introduced, by ~hree atoms being in collision at 
the same time, so that even if the velocities were all equal to 
begin with, inequalities would supervene in virtue of three or 
more atoms being in collision at the same time ; whether the 
initial differential velocities be small enough to result in two 
recoils, or whether one or both the mutual approaches lead to 
a passage or passages through one another. Whether  the 
distribution of velocities, which must ultimately supervene, 
is or is not according to the Maxwellian law, we need not 
decide in our minds ; but, as a first example, I have sup~msed 
the whole multitude to be given with velocities distributed 
among them according to that law (which, if they were 
infinitely hard, they would keep fbr ever a f te r ) ;  and we 
shall further  suppose equal average spacing in different 
parts of the row, so that we need not be troubled with the 
consideration of waves, as it were of sound~ running to and 
fro along the row. 

w 51. For  our present problem we require two lotteries~ to 
find the influential conditions at each instant, when Q enters 
P 's  eage-- lo t tery  I. for the velocity @) of Q at impact ; 
lottery II .  for the phase of P's motion. For  lottery I. (after 
trying g37 small squares of paper with velocities written on 
them and mixed in a bowl, and finding the plan unsatis- 
factory)~ we took nine stiff cards, numbered 1, 2 . . . .  9, of 
the size of ordinary playing-cards, with rounded corners ,  
with one hundred numbers written on each in ten lines of 
ten nmnbers. The velocities on each card are shown in the 
followlng table. The number of times each velocity occurs 
was chosen to Nlfil as nearly as may be the 3/Iaxwellian law, 

V 2 

which is Cdve- k = the nmnber of velocities heLween v+~&, 
and v--}dv. We took k = l ,  which, if dv were infinitely 
small, would make the mean of the squares of the velocities 
equal exactly to "5 ; we took dv=' l  and Cdv= 108, to give, 
as nearly as eireumstanees would allow, the Maxwellian law, 
and to make the total number of different velocities 900. 
The sum of the squares of all these 900 velocities is 468"4, 
which divided by 900 is "52. In  the practice of this lottery, 
the nmnbered cards were well shuffled and then one was 
drawn ; the particular one of the hundred velocities on this 
card to be chosen was tbund by drawing one card from a 
pack of one hundred nmnbered 1, 2 . . .  99, 100. In lottery 
[I. a pack of one hundred cards is used to draw one of om~ 

D2 
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hundred decimal numbers from "01 to 1"00. The decimat 
drawn, called a, shows the proportion of the whole period of 
P from the cage-front C, to K, and back to C, still unper- 
formed at the instant when Q crosses C. :Now remark, that 

TABLE SIIOWING THE ~UMBE[~ OP TIIE DIFFERENT VELOCITIES ON TIIE 
T) I FFERENT CARDS. 

Veloci ty .  '1 "2 "3 ! '4  "5 "6 ['7 "S 

. . . .  . . . . .  - - - -I - -r  . . . .  
Card 1 I100 

0 

., 2 7 93 
,, 3 [ 10 , 
,, 4 i 91mi 
,, 5 [ 1 1[84~15 
,, . I ! ' ,6c4c 

. 8 I , l 

_ : ' _ 2 _  . . . . . .  _ ;  _ 
Smnsof 10 "^~ 99192 84 7. velocities} 7 10~ 6~ 57 

' I �9 9 [ ~ . o l H  ~.2]~.:~ ~.~ 

I 

J 

17i 
31] 40 29 

3 26 1911.5 

48140132 26 19 115 

1"5 1'6 

11 9 

ll  9 

1'7 . . . . .  1"8 1"9 2"( 

4 , 3 , 2  

---14 . . . . .  3 Q 

2"i 2"2 1 

. . . . . .  t 

I 
i 

1 I ' 900] 
J 

if  Q overtakes 1 ) in the first half of its period, it gives its 
velocity, v, to P and follows it inwards ; and therefore there 
must be a second impact when P meets it after reflexion 
from K and gives it back the velocity v which it had on 
entering, i f  Q meets P in the second half of its period, Q 
will, by the first impact, get P 's  original velocity, and may 
with this velocity escape from the cage. But it may be ovm:- 
taken by P before it gets out of the cage, in which case it 
will go away from the cage with its own original velocity v 
unchanged. This occurs always ifj and never unless, u is 
less than v a  ; P 's  velocity being denoted by u,  and Q's by v. 
This case of Q overtaken by P can only occur if the entering 
velocity of Q is greater than the speed of P before collision. 
Except  in this case, P 's  speed is unchanged by the collision. 
Hence we see, that it is only when P's  speed is greater than 
Q's before collision, that there can be interchange, and this 
interchange leaves P with less speed than Q. I f  every 
collision involved interchange, tile average velocity of ]% 
would be equalized by the collisions to the average velocity 
of Q, and the average distribution of different velocities 
would be identical for Q and P. :Non-fulfilment of this 
equalizing interchange can, as we have seon, only occur when 
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Q's speed is less than P's, and therefore the average speed 
and the average kinetic energy of P must be less than the 
average kinetic energy of Q. 

w 52. We might be satisfied with this, as directly nega- 
tiving the Boltzmann-Maxwell doctrine for this case. I t  is, 
however~ interesting to know~ not only that the average 
kinetic energy of Q is greater than that of the caged atom, 
but~ fnrther~ to know how much greater it is. We have 
therefore worked out smnmations for 300 collisions between 
P and Q, beginning with u~---'5 (u= '71) ,  being approxi- 
mately the mean of v 2 as given by the lottery. I t  would have 
made no appreciable difference in the result if  we had begun 
with any value of u, large or small~ other than zero. Thus~ 
for example, if we had taken 100 as the first value of u~ this 
speed would have been taken by Q at the first impact~ and 
sent away along the practically infinite row~ never to be 
heard of again ; and the next value ot~ u would have been the 
first value drawn by lottery ibr v. Immediately before each 
of the subsequent impacts, the velocity of P is that which it 
had tu Q by the preceding impact. In  our work, tho 
speeds which P actually had at the first sixteen times of Q's 
entering the cage were "71. "5, "3, "2, "2, "1, "i, "2, "'2, "5, "7, 
"2, "3, "6, 1"5, "5--from which we see how little effect the 
choice of "71 for the first speed of" P had on those that follow. 
The summations were taken in successive groups of ten ; in 
every one of these Ev + exceeded Eu +. For the 300 we found 
~v2=148"53 and Eu+=61"62, of which the tbrmer is .2"41 
times the latter. The two ought to be equal according to 
the Boltzmann-Maxwell doctrine. Dividing ~v '~ by 300 we 
find "495, which chances to more nearly the "5 we intended 
than the "52 which is on the cards (w 51 above). A still 
greater deviation ('2"71 instead of 2"+11) was found by taking 
Ev a and ~u"% to allow for greater probability of impact with 
greater than with smaller values of' v ; u + being the velocity 
of P after collision with Q. 
Zv w 53. We have seen in w 51 that ~u + must be less than 

, but it seemed interesting to find how much less it would 
be with some other than the Maxwellian law of' distribution 
of' velocities. We therefore arranged cards for a lottery, 
with an arbitrarily chosen distribution, quite different from 
the Maxwellian. Eleven cards, each with one of the eleven 
numbers 1, 3 . . . .  19, .21, to correspond to the different 
velocities "1, "3 . . . .  1"9, .2"1, were prepared and used 
instead of the nine cards in the process described in w 51 
above. In all except one of the eleven tens, Ev ~ was greater 
than Zu 2, and tbr the whole 110 impacts we found ~v2= 179"90, 
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and ~u2=97"66;  the former of these is l'8~t times the 
latter. In this case we found the ratio of ~v 3 to ~ul~v to 
be 1"87. 

w 54. In conclusion, I wish to refer, in connexion with 
Class lI . ,  w 28, to a very interesting and important application 
of the doctrine, made by Maxwell himself, to the eq~,ilibrium 
of a tall column of g~s under the influence of gra, vity. Take, 
first, our one-dimensional gas of w 50, consisting of a straight 
row of a vast number of equal and similar atoms. Let now 
the line of the row be vertical, and let the atoms be under 
the influence of' terrestrial gravity, and suppose, first, the 
atoms to resist mutual approach, sufficiently to prevent any 
one from passing through another with the greatest relative 
velocity of approach that the total energy given to the 
assemblage can allow. The Boltzmann-Maxwell doctrine 
(9 18 above), asserting as it does that the time-integral of 
the kinetic energy is the same for all the atoms, makes the 
time-average of the kinetic energy the same tbr the highest 
~,s for the lowest in the row. This, if" true, would be an 
exceedingly interesting theorem. But now, suppose two 
approaching atoms not to repel one another with infinite 
force at any distance between their centres, and suppose 
energy to be given to the multitude sufficient to cause 
frequent instances of two atoms passing through one another. 
Still the doctrine can assert nothing but that the time- 
integral of the kinetic energy of any one atom is equal to 
that of any other atom, which is now a self-evident pro- 
position, because the atoms are of' equal masses, and each one 
of them in turn will be in every position of the colmnn, high 
or low. (If in the row there are atoms of different masses, 
the Waterston-Maxwcll doctrine of equal average energies 
would, of course, be important and interesting.) 

w 55. But now, instead of our ideal one-dimensional gas, 
consider a real homogeneous gas, in an infinitely bard vertical 
tube, with an infinitely h~rrd floor and roof, so that the gas 
is under no influence from without, except gravity. First, 
let there be only two or three atoms, each given with sufficient 
velocity to fly against gravity from floor to roof'. They will 
strike one another occasionally, and they will strike the sides 
and floor and roof of' the tube much more frequently than one 
another. The time-avera_~es of their kinetic energies ~ill be 
equal. So will they be if t~ere are twenty atoms, or a thousand 
atoms, or a million, million, million, million, million atoms. 
2Yow each atom will strike another atom much more frequently 
than the sides or floor or roof of the tube. In the long run 
each atom will be in every part of the tube as often as is 
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every other atom. The time-integral of the kinetic energy 
of any one atom will be equal to the time-integ,'a! of the 
kinotic energy of any other atom. This truism is simply and 
solely gll that the Boltzmann-Maxwell doctrine asserts for a 
vertical colmnn of a homogeneous monatomic gas. It is, 
I believe, a general impression that the Boltzmann-Maxwell 
doctrine, asserting a law of partition of the kinetic part of 
the whole energy, includes obviously a theorem that the 
average kinetic energy of the atoms in the upper parts of a 
vertical column of gas, is equal to that of the atoms in the 
lower parts of the column. Indeed, with the wording of 
Maxwell's statement, w 18, before us, we might suppose it to 
assert that two parts of our vertical column of gas, if they 
contain the same nmnber of atoms, must h'tve the same 
kinetic energy, though they be situated, one of them ,,ear the 
bottom of the colunm, and the other near the top. Maxwell 
himself, in his 1866 paper (" The Dynamical Theory of 
Gases") *, gave an independent synthetical demonstration of 
this proposition, and did not subsequently, so far as I know, 
regard it as inunediately deducible from the partitional 
doctrine generalized by Boltzmaun and himself several year.s 
after the date of that paper. 

w 56. Both Boltz,nann and Maxwell recognized the ex- 
perimentat contradiction of their doctrine presented by the 
kinetic theory of gases, and felt that an explanation of this 
incompatibility was imperatively called for. For instance, 
Maxwell, in a lectm'c on the dynamical evidence of the 
molecular constitution of bodies, given to the Chemical 
Society, Feb. 18, 1875, said : " i  have put before you what 
" [ consider to be the greatest difficulty yet encountered by 
" the  molecular theory. Boltzmann has suggested that w~.~ 
"are  to look for the explanation in the mutual action between 
" the molecules and the ethereal medium which sm'ronnds 
': them. I am afraid, however, that if we call in the help of 
"this  medimn we shall only increase the calculated specific 
"heat, which is already too great." Rayleigh, who has for 
the last twenty years been an unwavering supporter of the 
Boltzmann-Maxwell doctrine, concludes a paper " On the Law 
of Partition of Energy," published a year ago in the Phil. 
Mag., Jan. 1900, with the following words : "The difficulties 
"connected with the application of the law of equal partition 
" o f  energy to actual gases have long been felt. In the case of 
"argon and helium and mercury vapour, the ratio of' specific 
" heats (1"67) limits the degrees of freedoms of each molecule 

* Additian, of date December 17, 1866. Collected works, voL ii. p. 76. 
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C, to the three required for translatory motion. The value 
" (1"4) applicable to the principal diatomic o-ases, gives room 
" f o r  the three kinds of translation and for two kinds of 
"ro ta t ion .  Nothing is left for rotation round the line joining 
" t h e  atoms, nor for relative motion of the atoms in this line. 
' Even if we regard the atoms as mere points, whose rotation 

" means nothing, there must still exist energy of the last- 
"mentioned kind, and its amount (according to law) should 
" n o t  be inferior. 

" W e  are here brought face to face with a fundamental 
"difficulty, relating not to the theory of gases merely, hut 
" r a t h e r  to general dynamics. In most questions of dynamics, 
" a  condition whose violation involves a large amount of 
" potential energy may be treated as a constraint. I t  is on 
" this principle that solids are regarded as rigid, strings as 
" inex tens ib l e ,  and so on. And it is upon the recognition 
" o f  such constraints that Lagrange's method is founded. 
" But the law of equal partition disregards potential energy. 
" However great may be the energy required to alter the 
" distance of" the two atoms in a diatomic molecule, practical 
" r ig id i ty  is never secured, and the kinetic energy of the 
" relative motion in the line of junction is the same as if the 
" tie were of' the feeblest. The two atoms, however related, 
" remain twn atoms, and the degrees of freedom remain six 
" i n  number. 

" What  would appear to be wanted is some escape from 
" t h e  destructive simplicity of the general conclusion." 

The simplest way of arriving at this desired result is to 
deny the conclusion; and so, in the beginning of the twentieth 
century, to lose sight of a cloud which has obscured the 
brilliance of the molecular theory of heat and light during 
the last quarter of the nineteenth century. 

] I .  Tl, e Absorption o f  the Ion ized*  t~lwspho'~'us 
Emanation in T u b e s . - - I [ .  Bg C. BAttus-L 

1. - ~ O R  reasons of both theoretical and practical import it 
1 '  is next necessary to ascertain the precise conditions 

under which the phosphorus nucleus vanishes on passing 
* Whoever writes on subjects relating, like the present, to certain 

features of ionization is obliged to make free use of the admirable work 
(Thomson, C. T. R. Wilson, Townsend, Rutherford, Zeleny, and others), 
which has been sent out bvthe Cavendish Laboratory under the direction 
of Prof. J. J. Thomson. ~'hese researches, like those of Chattock, Elstel 
and Geitel, and others (cf. H. Becquerel in ' Nature,' Feb. 21st, p. 396, 
1901), are so recent and well known that detailed reference would be 
cumbersome ; but I desire to make my acknowledgments here. 

t Comnnmiceted by the Author. 




