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[In the present article, the substance of the lecture is
reproduced—with large additions, in which work com-
menced at the begmmna of last year and continued after
the lecture, during thirteen months up to the present time,
is described—with results confirming the conclusions and
largely extending the illustrations which were given in the
lecture. I desire to take this opportunity of expressing my
obligations to Mr. William Anderson, my secretary and
assistant, for the mathematical tact and skill, the accuracy
of geometrlcal drawing, and the unfalhngly faithful per-
severance in the long-continued and varied series of drawings
and algebraic and arithmetical calculations, explained in the
following pages. The whole of this work, involving the
determination of results due to more than five thousand
individual impacts, has been performed by Mr. Anderson.—
K., Feb. 2, 1901.]

§ L. THE beauty and clearness of the dynamical theory,

which asserts heat and light to be modes of
motion, is at present obscured by two clouds. I. The first
came into existence with the undulatory theory of light, and

* Lecture delivered at the Royal Institution of Great Britain, on
Friday, April 27, 1900.
+ Communicated by the Author.
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2 Lord Kelvin on the

was dealt with by IFresnel and Dr. Thomas Young; it
involved the question, How could the earth move through
an elastic solid, such as essentially is the luminiferous ether ?
II. The second is the Maxwell-Boltzmann doctrine regarding
the partition of energy.

§ 2—~Croup I.—Rrramive Momox or ErrER AND PoN-
DERABLE BoviEs; such as movable bodies at the earth’s
surface, stones, metals, liquids, gases; the atmosphere
surrounding the earth ; the earth itself as a whole; meteo-
rites, the moon, the sun, and other celestial bodies. We
might imagine the question satisfactorily answered, by
supposing ether to have practically perfect elasticity for
the exceedingly rapid vibrations, with exceedingly small
extent of distortion, which constitute light; while it behaves
almost like a fluid of very small viscosity, and yields with
exceedingly small resistance, practically no resistance, to
bodies moving through it as slowly as even the most rapid
of the heavenly bodies. There are, however, many very
serious objections to this supposition; among them one
which has been most noticed, though perhaps not really the
most serious, that it seems incompatible with the known
phenomena of the aberration of light. Referring to it,
Fresnel, in his celebrated letter* to Arago, wrote as
follows :

“Mais il parait impossible d’expliquer Paberration des
“étoiles dans cette hypothése; je n’al pu jusquw’a présent
“du moins concevoir nettement ce phénomeéne qu’en sup-
“ posant que I’éther passe librement au travers du globe,
“et que la vitesse communiquée & ce fluide subtil n’est
“ qu’une petite partie de celle de la terre ; n’en excéde pas
“le centieme, par exemple.

“ Quelque extraordinaire que paraisse cette hypothése au
“ premier abord, elle n’est point en contradiction, ce me
“ semble, avec 1'idée que les plus grands physiciens se sont
“ faite de 'extréme porosité des corps.”

The same hypothesis was given by Thomas Young, in Ais
celebrated statement that ether passes through among the
molecules or atoms of material bodies like wind blowing
through a grove of trees. 1t is clear that neither Fresnel
nor Young had the idea that the ether of their undulatory
theory of light, with its transverse vibrations, is essentially
an elastic solid, that is to say, matter which resists change of
shape with permanent or sub-permanent force. If they had

* Annales de Chimie, 1818 ; quoted in full by Larmor in his recent
book, ¢ Ather and Matter,” pp. 320-322.
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grasped this idea, they must have noticed the enormous
difficulty presented by the laceration which the ether must
experience if it moves through pores or interstices among
the atoms of matter.

§ 3. It has occurred to me that, without contravening
anything we know from observation of nature, we may
simply deny the scholastic axiom that two portions of matter
cannot jointly occupy the same space, and may assert, as an
admissible hypothesis, that ether does occupy the same space
as ponderable matter, and that ether is not displaced by
ponderable bodies moving through space occupied by ether.
But how then could matter act on ether, and ether act on
matter, to produce the known phenomena of light (or radiant
heat), generated by the action of ponderable bodies on ether,
and acting on ponderable bodies to produce its visual,
chemical, phosphorescent, thermal, and photographic effects ?
There is no difficulty in answering this question if, as it
probably is, ether is a compressible and dilatable * solid.
‘We have only to suppose that the atom exerts force on the
ether, by which condensation or rarefaction is produced
within the space occupied by the atom. At present{ I
eonfine myself, for the sake of simplicity, to the suggestion
of a spherical atom producing condensation and rarefaction,
with concentric spherical surfaces of equal density, but the
same total quantity of ether within its boundary as the
quantity in an equal volume of free undisturbed ether.

§ 4. Consider now such an atom given at rest anywhere in
space occupied by ether. Let force be applied to it to cause
it to move in any direction, first with gradually increasing
speed, and after that with uniform speed. If this speed is
anything less than the velocity of light, the force may be
mathematically proved to become zero ai some short time
after the instant when the velocity of the atom becomes
uniform, and to remain zero for ever thereafter. What takes
place is this :

§ 5. During all the time in which the velocity of the atom
is being augmented from zero, two sets of non-periodic waves,
one of them equi-voluminal, the other irrotational (which is
therefore condensational-rarefactional), are being sent out in

# To deny this property is to attribute to ether infinitely great resist-
ance against forces tending to condense it or to dilate it—which seems,
in truth, an infinitely difficult assumption.

+ Further developments of the suggested idea have been contributed
to the Royal Society of Edinburgh, and to the Congrés International de
Physique, held in Paris in August. (Proc. R.S.E. July 1900; vol. of
rveports, in French, of the Cong. Inter.; and Phil. Mag., Aug., Sept,,

1900.)
B2



4 Lord Kelvin on the

all directions through the surrounding ether. The rears
of the last of these waves leave the atom, at some time after
its acceleration ceases. This time, if the motion of the ether
outside the atom, close beside it, is infinitesimal, is equal to
the time taken by the slower wave (which is the equi-
voluminal) to travel the diameter of the atom, and is the
short time referred to in § 4. 'When the rears of both waves
have got clear of the atom, the ether within it and in the
space around it, left clear by both rears, has come to a steady
state of motion relatively to the atom. This steady motion
approximates more and more nearly to uniform motion in
parallel lines, at greater and greater distances from the atom.
At a distance of twenty diameters it differs exceedingly little
from uniformity.

§ 6. But it is only when the velocity of the atom is
very small in comparison with the velocity of light, that
the disturbance of the ether in the space close round the
atom is infinitesimal. The propositions asserted in § 4 and
the first sentence of § 5 are true, however little the final
velocity of the atom falls short of the velocity of light. If
this uniform final velocity of the atom exceeds the velocity
of light, by ever so little, a non-periodic conical wave of
equi-voluminal motion is produced, according to the same
principle as that illustrated for sound by Mach’s beautiful
photographs of illumination by electric spark, showing, by
changed refractivity, the condensational-rarefactional dis-
turbance produced in air by the motion through it of a rifle
bullet. The semi-vertical angle of the cone, whether in air
or ether, is equal to the angle whose sine is the ratio of the
wave velocity to the velocity of the moving body *.

# On the same principle we sce that a body moving steadily (and,
with little error, we may say also that a fish or water-fow! propelling
itself by fins or web-feet) through calm water, either floating on the:
surface or wholly submerged at some moderate distance below the sur~
face, produces no wave disturbance if its velocity is less than the
minimum wave velocity due to gravity and surfice tension (being about
23 cms. per second, or ‘44 of a nautical mile per hour, whether for sea
water or fresh water); and if its velocity exceeds the minimum wave
velocity, it produces a wave disturbance bounded by two lines inclired
on each side of its wake at angles each equal to the angle whose sine is
the minimum wave velocity divided by the velocity of the moving body.
It is easy for anyome to observe this by dipping vertically & pencil or a
walking-stick into still water in a pond (or even in a good-sized hand
basin), and moving it horizontally, first with exceeding small speed, and
afterwards faster and faster. I first noticed it nineteen years ago, and
described observaticns for an experimental determination of the minimum
velocity of waves, in a letter to William Froude, published in ¢ Nature ’
for October 26, and in the Phil. Mag. for November 1871, from which
the following is extracted. “[Recently, in the schooner yacht Lalla
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§ 7. If, for a moment, we imagine the steady motion of
the atom to be at a higher speed than the wave velocity
of the condensational-rarefactional wave, two conical waves,
of angles corresponding to the two wave velocities, will be
steadily produced ; but we need not occupy ourselves at
present with this case because the velocity of the condensa-
tional-rarefactional wave in ether is, we are compelled to
believe, enormously great in comparison with the velocity
of light.

§ 8. Let now a periodic force be applied to the atom so as
to cause it to move to and fro continually, with simple har-
monic motion. By the first sentence of § 5 we see that two
sets of periodic waves, one equi-voluminal, the other irrota-
tional, are continually produced. Without mathematical
investigation we see that if, as in ether, the condensational-
rarefactional wave velocity is very great in comparison with
the equi-voluminal wave velocity, the energy taken by the
condensational-rarefactional wave is exceedingly small in
comparison with that taken by the equi-voluminal wave ;
how small we can find easily enough by regular mathematical
investigation. Thus we see how 1t is that the hypothesis of
§ 3 suffices for the answer suggested in that section to the
question, How could matter act on ether so as to produce
light ?

g§ 9. But this, though of primary importance, is only a
small part of the very general question pointed out in §3
as needing answer. Another part, fundamental in the

# Rookk], being becalmed in the Sound of Mull, I had an excellent
# ogpportunity, with the assistance of Professor Helmholtz, and my
4 brother from Belfast [the late Professor James Thomson], of deter-
“ mining by observation the minimum wave-velocity with some approach
#to accuracy. The fishing-line was hung at a distance of two or three
“ feet from the vessel’s side, so as to cut the water at a point not sensibly
« disturbed by the motion of the vessel. The speed was determined by
4 throwing into the sea pieces of paper previously wetted, and observing
4 their times of transit across parallel planes, at a distance of 912 centi-
¢ metres asunder, fixed relatively to the vessel by marks on the deck and
# gunwale. By watching carefully the pattern of ripples and waves which
4 connected the ripples in front with the waves in rear, I had seen that
it included a set of parallel waves slanting off obliquely on each side
¢ gand presenting appearances which proved them to be waves of the
“critical length and corresponding minimum speed of propagation.”
When the speed of the yacht fell to but little above the critical velocity,
the front of the ripples was very nearly perpendicular to the line of
motion, and when it just fell below the critical velocity the ripples
disappeared altogether, and there was no perceptible disturbance on the
surface of the water. The sea was “glassy ” ; though there was wind
enough to propel the schooner at speed varying between % mile and
1 mile per hour.
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undulatory theory of optics, is, How is it that the velocity
of light 3s smaller in transparent ponderable matter thau in
pure ether ? Attention was called to this particular question
in my address, to the Royal Institution, of last April ; and a
slight explanation of my proposal for answering it was given,
and illustrated by a diagram. The validity of this proposal
is confirmed by a somewhat elaborate discussion and mathe-
matical investigation of the subject worked out since that
time and communicated under the title, “ On the Motion
produced in an infinite Elastic Solid by the Motion through
the Space occupied by it of a Body acting on it only by
Attraction or Repulsion,” to the Royal Society of Edinburgh
on July 16, and to the Congrés International de Physique
for its meeting at Paris in the beginning of August *.

§ 10. The other phenomena referred to in §3 come
naturally under the general dynamics of the undulatory
theory of light, and the full explanation of them all is
brought much nearer if we have a satisfactory fundamental
relation between ether and matter, instead of the old intract-
able idea that atoms of matter displace ether from the space
before them, when they are in motion relatively to the ether
around them. May we then suppose that the hypothesis
which I have suggested clears away the first of our two
clouds? It certainly would explain the ‘aberration of
light ” connected with the earth’s motion through ether in
a thoroughly catisfactory manner. It would allow the earth
to move with perfect freedom through space occupied by
ether without displacing it. In passing through the earth
the ether, an elastic solid, would not be lacerated as it would
be according to Fresnel’s idea of porosity and ether moving
through the pores as if it were a fluid. Ether would move
relatively to ponderables with the perfect freedom wanted
for what we know of aberration, instead of the imperfect
freedom of air moving through a grove of trees suggested by
Thomas Young. According to it, and for simplicity neglect-
ing the comparatively very small component due to the
earth’s rotation (only ‘46 of a kilometre per second at the
equator where it is a maximum), and neglecting the imper-
fectly known motion of the solar system through space
towards the constellation Hercules, discovered by Herschel 1,

* Phil. Mag., Aug. 1900.

1 The splendid spectroscopic method originated by Huggins thirty-
three years ago, for measuring the component in the line of vision of the
relative motion of the earth, and any visible star, has been carried on
since that time with admirable perseverance and skill by other observers,

who have from their results made estimates of the velocity and direction
of the motion through space of the centre of inertia of the solar system.
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there would be at all points of the earth’s surface a flow of
ether at the rate of 30 kilometres per second in lines all
parallel to the tangent to the earth’s orbit round the sun.
There is nothing inconsistent with this in all we know of the
ordinary phenomena of terrestrial optics ; but, alas! there is
inconsistency with a conclusion that ether in the earth’s
atmosphere is motionless relatively to the earth, seemingly
proved by an admirable experiment designed by Michelsen,
and carried out, with most searching care to secure a trust-
worthy result, by himself and Morley *. I cannot see any
flaw either in the idea or in the execution of this experiment.
But a possibility of escaping from the conclusion which it
seemed to prove, may be found in a briiliant suggestion made
independently by FitzGorald  and by Lorentz § of Leyden,
to the effect that the motion of ether through matter may
slightly alter its linear dimensions, according to which if the
stone slab constituting the scle plate of Michelsen and
Morley’s apparatus has, in virtue of its motion through space
occupied by ether, its lineal dimensions shortened one one-
hundred-millionth § in the direction of motion, the result of
the experiment would not disprove the free motion of ether
through space occupied by the earth.

§ 11. I am afraid we must still regard Cloud No. L. as
very dense.

§ 12. Croup II.—Waterston (in a communication to the
Royal Society, now famous; which, after lying forty-five
years buried and almost forgotten in the archives, was

My Glasgow colleague, Professor Becker, has kindly given me the fol-
lowing information on the subject of these researches:

* The early (1888) Potsdam photographs of the spectra of 51 stars
brighter than 2§ magnitude have been employed for the determination
of the apex and velocity of the solar system. Kempf (Astronomische
Nackrichten, vol. 132) finds for the apex: right ascension, 206° + 12°;
declination, 46° 4- 9°; velocity, 19 kilometres per second; and Risteen
(Astronomical Journal, 1893) finds practically the same quantities. The
proper motions of the fixed stars assign to the apex a position which
may be anywhere in a narrow zone parallel to the Milky-way, and ex-
tending 20° on both sides of a point of Right Ascension 275° and
Declination 4+ 30°, The authentic mean of 13 values determined by
the methods of Argelander or Airy gives 274° and + 35° (André,
Traité &' Astronomze Stellaire).”

# Phil. Mag., December 1887,

+ Public Lectures in Trinity College, Dublin.

i Versuch einer Theorie der electrischen und optischen Erscheinungen
in bewegten Korpern.

§ This being the square of the ratio of the earth’s velocity round the

sun (30 kilometres per sec.) to the velocity of light (300,000 kilometres
per sec.).
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rescued from oblivion by Lord Rayleigh and published, with
an introductory notice of great interest and importance, in
the Transactions of the Royal Society for 1892), enunciated
the following proposition: ‘‘In mixed media the mean square
“ molecular velocity is inversely proportional to the specific
“ weight of the molecule. This is the law of the equilibrium
“of vis viva.” Of this proposition Lord Rayleigh in a
footnote * says, ¢ This is the first statement of a very
“important theorem (see also Brit. Assoc. Rep., 1851).
“The demonstration, however, of §10 can hardly be de-
“fended. It bears some resemblance to an argument
“indicated and exposed by Professor Tait (Edinburgh
“Trans., vol. 33, p. 79, 1886). There is reason to think
“that this law is intimately connected with the Maxwellian
¢ distribation of velocities of which Waterston had no know-
“ledge.”

§ 13. In Waterston’s statement, the ¢ specific weight of
a molecule” means what we now call simply the mass of a
molecule ; and *“ molecular velocity ” means the translational
velocity of a molecule. Writing on the theory of sound in
the Phil. Mag. for 1858, and referring to the theory de-
veloped in his buried paper T, Waterston suid, “ The theory
“ . assumes . . . . that if the impacts produce rotatory
“ motion the vis viva thus invested bears a constant ratio to
“the rectilineal vis viva.”  This agrees with the very
important principle or truism given independently about the
same time by Clausius to the effect that the mean energy,
kinetic and potential, due to the relative motion of all the
parts of any molecule of a gas, bears a constant ratio to
the mean energy of the motion of its centre of inertia when
the density and pressure are constant.

§ 14. Without any knowledge of what was to be found in
Waterston’s buried paper, Maxwell, at the meeting of the
British Association at Aberdeen, in 1859 { gave the following
proposition regarding the motion and collisions of perfectly
elastic spheres: “Two systems of particles move in the same
“vessel ; to prove that the mean vis viva of each particle
“ will become the same in the two systems.” This is pre-
cisely Waterston’s proposition regarding the law of partition
of energy, quoted in § 12 above ; but Maxwell’s 1860 proof
was certainly not more successful than Waterston’s. Max-

# Phil. Trans. A, 1892, p. 16.

t “On the Physics of Media that are composed of Force and Perfectly
Elastic Molecules in a State of Motion.”” Phil. Trans., A, 1892, p. 18,

1 “Illustrations of the Dynamical Theory of Gases,” Phil. Mag.,
January and July 1860, and collected works, vol. 1. p, 378.
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well’s 1860 proof has always seemed to me quite inconclusive,
and many times I urged my colleague, Professor Tait, to
enter on the subject. This he did, and in 1886 he com-
municated to the Royal Society of Hdinburgh a paper * on
the foundations of the kinetic theory of gases, which con-
tained a critieal examination of Maxwell’s 1860 paper, highly
appreciative of the great originality and splendid value, for
the kinetic theory of gases, of the ideas and principles set
forth in it; but showing that the demonstration of the
theorem of the partition of energy in a mixed assemblage of
articles of different masses was inconclusive, and success-
fully substituting for it a conclusive demonstration.

§ 15. Waterston, Maxwell, and Tait, all assume that the

articles of the two systems are thoroughly mised (Tait,
§ 18), and their theorem is of fundamental importance in
respect to the specific heats of mixed gases. But they do
not, in any of the papers already referred to, give any
indication of a proof of the corresponding theorem, regarding
the partition of energy between two sets of equal particles
separated by a membrane impermeable to the molecules,
while permitting forces to act across it between the mole-
cules on its two sides T, which is the simplest illustration of
the molecular dynamics of Avogadro’s law. It seems to me,
however, that Tait’s demenstration of the Waterston-Maxwell
law may possibly be shown to virtually include, not only this
vitally important subject, but also the very interesting,
though comparatively unimportant, case of an assemblage of
particles of equal masses with a single particle of different
mass moving about among them.

§ 16. In §§12, 14, 15, “ particle”” has been taken to mean
what is commonly, not correctly, called an elastic sphere, but
what is in reality a Boscovich atom acting on other atoms in
lines exactly through its centre of inertia (so that no rotation
is in any case produced by collisions), with, as law of action
between two atoms, no force at distance greater than the sum
of their radii, infinite force at exactly this distance. None of
the demonstrations, unsuccessful or successful, to which [
have referred would be essentially altered if, instead of this
last condition, we substitute a repulsion increasing with

# Phil, Trans. R.S.E,, “ On the Foundations of the Kinetic Theory of
Guases,” May 14 and December 6, 1886, and January 7, 1887. (Abstract
in Phil. Mag. April 1836 and Feb. 1887.)

t A very interesting statement is given by Maxwell regarding this
subject in his latest paper regarding the Beltzmann-Maxwell doctrine.
“On Boltzmann’s Theorem on the Average Distribution of Energy in a
System of Material Points,” Camb. Phil. Trans., May 6, 1878; Collected
‘Works, vol. ii. pp. 713-741.
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diminishing distance, according to any law for distances less
than the sum of the radii, subject only to the condition that
it would be infinite before the distance became zero. In fact
the impact, oblique or direct, between two Boscovich atoms
thus defined, has the same result after the collision is com-
pleted (that is to say, when their spheres of action get outside
one another) as collision between two conventional elastic
spheres, imagined to have radii dependent on the lines and
velocities of approach before collision (the greater the relative
velocity the smaller the effactive radii); and the only as-
sumption essentially involved in those demonstrations is, that
the radius of each sphere is very small in comparison with
the average length of free path.

§ 17. But if the particles are Boscovich atoms, having
centre of inertia not coinciding with centre of force ; or quast
Boscovich atoms, of non-spherical figure; or (a more accept-
able supposition) if each particle is a cluster of two or more
Boscovich atomsx : rotations and changes of rotation would
result from collisions. Waterston’s and Clausius’ leading
principle, quoted in § 13 above, must now be taken into
account, and Tait’s demonstration is no longer applicable.
Waterston and Clausius, in respect to rotation, both wisely
abstained from saying more than that the average kinetic
energy of rotation bears u constant ratio to the average
kinetic energy of translation. With magnificent boldness
Boltzmann and Maxwell declared that the ratio is equality ;
Boltzmann having found what seemed to him a demonstra-
tion of this remarkable proposition, and Maxwell having
accepted the supposed demonstration as valid.

§ 18. Boltzmann went further * and extended the theorem
of equality of mean kinetic energies to any system of a finite
number of material points (Boscovich atoms) acting on one
another, according to any law of force, and moving freely
among one another ; and finally, Maxwell  gave a demon-
stration extending it to the generalized Lagrangian co-ordi-
nates of any system whatever, with a finite or infinitely great
number of degrees of freedom. The words in which he
enunciated his supposed theorem are as follows :

“The only assumption which ix necessary for the direct
¢ proot is that the system, if left to itself in its actual state of

# ¢« Studien iiber das Gleichgewicht der lebendigen Kraft zwischen
bewegten materiellen Punkten.” Sitzb. K. Akad. Wien, October 8,
1868.

T ¢ On Boltzmann’s Theorem on the Average Distribution of Energy
in a System of Material Points” Maxwell's Collected Papers, vol. i3,
pp- 718-741, and Camb, Phil. Trans., May 6, 1878.
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“motion, will, sooner or later, pass [infinitely nearly *]
“through every phase which is consistent with the equation
“ of energy ™ (p. 714) and, again (p. 716).

‘1t appears from the theorem, that in the ultimate state of
“the system the averaget kinetic energy of two portions
“ of the system must be in the ratio of the number of degrees
“of freedom of those portions.

“ This, therefore, must be the condition of the equality of
¢ temperature of the two portions of the system.”

I have never seen validity in the demonstration } on which
Maxwell founds this statement, and it has always seemed to
me exceedingly improbable that it can be trme. If true, it
would be very wonderful, and most interesting in pure
mathematical dynamics. Having been published by Boltz-
mann and Maxwell it would be worthy of most serious
attention, even without consideration of its bearing on
thermo-dynamics. But, when we consider its bearing
on thermo-dynamies, and in its first and most obvious appli-
cation we find it destructive of the kinetic theory of gases, of
which Maxwell was one of the chief founders, we cannot see
it otherwise than as a clond on the dynamical theory of heat
and light.

§ 19. For the kinetic theory of guses, let each molecule be
a cluster of Boscovich atoms. This includes every possibility
(“dynamical,” or “electrical,” or “physical,” or “chemical’”)
regarding the nature and qualities of a molecule and of all its
parts. The mutual forces between the constituent atoms
must be such that the cluster is in stable equilibrium if given
at rest ; which means, that if started from equilibrium with

* I have inserted these two words as certainly belonging to Maxwell’s
meaning.—K

T The average here meant is a time-average through a sufficiently long
time.

T The mode of proof followed by Maxwell, and its connection with
antecedent considerations of his own and of Boltzmann, imply, as in-
cluded in the gemeral theorem, that the average kinetic energy of any
omne of three rectangular components of the motion of the centre of inertia
of an isolated system, acted upon only by mutual forces between its parts,
is equal to'the average kinetic energy of each generalized component of
motion relatively to the centre of inertia. Consider, for example, as
“ parts of the system ” two particles of masses m and m' free to move
only in a fixed straight line, and connected to one another by a massless
spring. The Boltzmann-Maxwell doctrine asserts that the average
kinetic energy of the motion of the inertial centre is equal to the average
kinetic energy of the motion relative to the inertial centre. This is
included in the wording of Maxwell’s statement in the text if, but not
unless, m=m'. See footnote on § 7 of my paper “On some Test-Cases
for the Boltzmann-Maxwell Dcoctrine regarding Distribution of Energy.”
Proc. Roy. Soc., June 11, 1891.
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its constituents in any state of relative motion, no atom will
fly away from it, provided the total kinetic energy of the
given initial motion does not exceed some definite Limit. A
gas is a vast assemblage of molecules thus defined, each
moving freely through space, except when in collision with
another cluster, and each retaining all its own constituents
unaltered, or only altered by interchange of similar atoms
between two clusters in collision.

§ 20. For simplicity we may suppose that each atom, A,
has a definite radius of activity, «, and that atoms of different
kinds, A, A’, have different radii of activity, @, «’; such that
A exercises no force on any other atom, A’, A”, when the
distance between their centres is greater than a+a’ or 2+ 2",
‘We need not perplex our minds with the inconceivable idea
of “virtue,” whether for force or for inertia, residing in a
mathematical point* the centre of the atom; and without
mental strain we can distinctly believe that the substance
(the “ substratum” of qualities) resides, not in a point, nor
vaguely through all space, but definitely in the spherical
volume of space bounded by the spherical surface whose
radius is the radius of activity of the atom, and whose centre
is the centre of the atom. In our intermolecular forces thus
defined, we have no violation of the old scholastic law,
“Matter cannot act where it is not,”” but we explicitly violate
the other scholastic law, “Two portions of matter cannot
simultaneously occupy the same space.” We leave to gravi-
tation, and possibly to electricity (probably not to magnetism),
the at present very unpopular idea of action at a distance.

§ 21. We need not now (as in § 16, when we wished to
keep as near as we could to the old idea of colliding elastic
globes) suppose the mutual force to become infinite repulsion
before the centres of two atoms, approaching one another,
meet., Following Boscovich, we may assume the force to
vary according to any law of alternate attraction and repul-
sion, but without supposing any infinitely great force, whether
of repulsion or attraction, at any particular distance; but we
must assume the force to be zero when the centres are coin-
cident. We may even admit the idea of the centres being
absolutely coincident, in at all events some cases of a chemical
combination of two or more atoms; although we might con-
sider it more probable that in most cases the chemieal com-
bination is a cluster, in which the volumes of the eonstituent
atoms overlap without any two centres absolutely coinciding.

§ 22. The word “ collision *” used without definition in § 19
may now, in virtue of §§ 20, 21, be unambiguously defined

* See Math. and Phys. Papers, vol. iii. art. xcvir. “ Molecular Consti-
tution of Matter,” § 14.
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thus: Two atoms are said to be in collision during all the
time their volumes overlap after coming into contact. They
necessarily in virtue of inertia separate again, unless some
third body intervenes with action which causes them to
remain overlapping; that is to say, causes combination to
result from collision. Two clusters of atoms are said to be
in collision when, after being separate, some atom or atoms
of one cluster come to overlap some atom or atoms of the
other. In virtue of inertia the collision must be followed
either by the two clusters separating, as described in the last
sentence of § 19, or by some atom or atoms of one or both
systems being sent flying away. This last supposition is a
matter-of-fact statement belonging to the magnificent theory
of dissociation, discovered and worked out by Sainte-Clair
Deville without any guidance from the kinetic theory of
gases. In gases approximately fulfilling the gaseous laws
(Boyle’s and Charles’), two clusters must in general fly
asunder after collision. Two clusters could not possibly
remain permanently in combination without at least one atom
being sent flying away after collision between two clusters
with no third body intervening ¥*.

§ 23. Now for the application of the Boltzmann-Maxwell
doctrine to the kinetic theory of gases: consider first a
homogeneous single gas, that is, a vast assemblage of similar
clusters of atoms moving and colliding as described in the
last sentence of § 19; the assemblage being so sparse that
the time during which each cluster is in collision is very
short in comparison with-the time during which it is unacted
on by other clusters, and its centre of inertia, therefore,
moves uniformly in a straight line. If there are ¢ atoms in
each cluster, it has 3/ freedoms to move, that is to say, free-
doms in three rectangular directions for each atom. The
Boltzmann-Maxwell doctrine asserts that the mean kinetic
energies of these 3¢ motions are all equal, whatever be the
mutual forces between the atoms. From this, when the
durations of the collisions are not included in the time-
averages, it is easy to prove algebraically (with exceptions
noted below) that the time-average of the kinetic energy of
the component translational velocity of the inertial centre f,
in any direction, is equal to any one of the 3i mean kinetic
energies asserted to be equal to one another in the preceding
statement. There are exceptions to the algebraic proof

% See Kelvin's Math. and Phys, Papers, vol. iii. Art, xcvir § 83. In
this reference, for * scarcely ” substitute ““not.”

T This expression I use for brevity to signify the kinetic energy of the
whole mass ideally collected at the centre of inertia.
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corresponding to the particular exception referred to in the
last footnote to § 18 above; but, nevertheless, the general
Boltzmann-Maxwell doctrine includes the proposition, even
in those cases in which it is not deducible algebraically from
the equality of the 37 energies. Thus, without exception, the
average kinetic energy of any component of the motion of
the inertial centre is, according to the Boltzmann-Maxwell

. 1 .
doctrine, equal to o of the whole average kinetic energy of

the system. This makes the total average energy, potential
and kinetic, of the whole motion of the system, translational
and relative, to be 3:(1 + P) times the mean kinetic energy
of one component of the motion of the inertial centre, where
P denotes the ratio of the mean potential energy of the
relative displacements of the parts to the mean kinetic energy
of the whole system. Now, according to Clausius’ splendid
and easily proved theorem regarding the partition of energy in
the kinetic theory of gases, the ratio of the difference between
the two thermal capacities to the constant-volume thermal
capacity is equal to the ratio of twice a single component of
the translational energy to the total emergy. Hence, if
according to our usual notation we denote the ratio of the
thermal capacity, pressure constant, to the thermal capacity,
volume constant, by %, we have,

2
k=1=y05py

§ 24. Example 1.—For first and simplest example, consider
a monatomic gas. We have i=1, and according to our sup-
position (the supposition generally, perhaps universally, made)
regarding atoms, we have P=0. Hence, k—1=4%.

This is merely a fundamental theorem in the kinetic theory
of gases for the case of no rotational or vibrational energy of
the molecule; in which there is no scope either for Clausius’
theorem or for the Boltzmann-Maxwell doctrine, It is beau-
tifully illustrated by mercury vapour, a monatomic gas
according to chemists, for which many years ago Kundt, in
an admirably designed experiment, found k—1 to be very
approximately §; and by the newly discovered gases argon,
helium, and krypton, for which also £—1 has been found to
have approximately the same value, by Rayleigh and Ramsay,
But each of these four gases has a large number of spectrum
lines, and therefore a large number of vibrational freedoms,
and therefore, if the Boltzmann-Maxwell doctrine were true,
k£—1 would have some exceedingly small value, such as that
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shown in the ideal example of § 26 below. On the other
hand, Clausius’ theorem presents no difficulty ; it merely
asserts that £—1 is necessarily less than 2 in each of these
four cases, as in every case in which there is any rotational
or vibrational energy whatever; and proves, from the values
found experimentally for £—1 in the four gases, that in each
case the total of rotational and vibrational energy is exceed-
ingly small in comparison with the translational energy. Tt
justifies admirably the chemical doctrine that mereury vapour
is practically a monatomic gas, and it proves that argon,
helium, and krypton, are also practically monatomie, though
none of these gases has hitherto shown any chemical affinity
or action of any kind from which chemists could draw any
such conelusion.

But Clausius’ theorem, taken in connection with Stokes’
and Kirchhoff’s dynamics of spectrum analysis, throws a new
light on what we are now calling a “practically monatomic
gas.” It shows that, unless we admit that the atom can be
set into rotation or vibration by mutual collisions (a most
unacceptable hypothesis), it must have satellites connected
with it (or ether condensed into it or around it) and kept,
by the collisions, in motion relatively to it with total energy
exceedingly small in comparison with the translational
energy of the whole system of atom and satellites. The
satellites must in all probability be of exceedingly small mass
in comparison with that of the chief atom. Can they be the
“jons” by which J.dJ. Thomson explains the electric con-
ductivity induced in air and other gases by ultra-violet light,
Réntgen rays, and Becquerel rays ¢

Finally, 1t is interesting to remark that all the values of
k—1 found by Rayleigh and Ramsay are somewhat less than
£; argon 64, *61; helium *652; krypton -666. If the devia-
tion from -667 were accidental they would probably have
been some in defect and some in excess.

Ezample 2.—As a next simplest example let ¢=2, and as
a very simplest case let the two atoms be in stable equili-
brium when concentric, and be infinitely nearly concentric
when the clusters move abont, constituting a homogeneous
gas. This supposition makes P=4}, because the average
potential energy is equal to the average kinetic energy in
simple harmonic vibrations; and in our present case half the
whole kinetic energy, according to the Boltzmann-Maxwell
doctrine, is vibrational, the other half being translational.
We find k—1=4="2222.

Lzample 3.—Let i=2; let there be stable equilibrium,
with the centres C, C' of the two atoms at a finite distance a
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asunder, and let the atoms be always very nearly at this
distance asunder when the clusters are not in collision. The
relative motions of the two atoms will be according to three
freedoms, one vibrational, consisting of very small shorten-
ings and lengthenings of the distance C C/, and two rotational,
consisting of rotations round one or other of two lines per-
pendicular to each other and perpendicular to C (! through
the inertial centre. With these conditions and limitations,
and with the supposition that half the average kinetic energy
of the rotation is comparable with the average kinetic energy
of the vibrations, or exactly equal to it as according to the
Boltzmann-Maxwell doctrine, it is easily proved that in
rotation the excess of CC’ above the equilibrium distance a,
due to centrifugal force, must be exceedingly small in com-
parison with the maximum value of C(/—a due to the
vibration. Hence the average potential energy of the rota-
tion is negligible in comparison with the potential energy of
the vibration. Hence, of the three freedoms for relative
motion there is only one contributory to P, and therefore we
have P=%. Thus we find t—1=2="2857.

The best way of experimentally determining the ratio of
the two thermal capacities for any gas is by comparison
between the observed and the Newtonian velocities of sound.
It has thus been ascertained that, at ordinary temperatures
and pressures, £—1 differs but little from 406 for common
air, which is a mixture of the two gases nitrogen and oxygen,
each diatomic according to modern chemical theory; and the
greatest value that the Boltzmann-Maxwell doctrine can give
tfor a diatomic gas is the *2857 of Ex. 3. This notable dis-
crepance from observation suffices to absolutely disprove the
Boltzmann-Maxwell doctrine. What is really established in
respect to partition of energy is what Clausius’ theorem tells
us (§ 23 above). We find, as a result of observation and
true theory, that the average kinetic energy of translation of
the molecules of common air is ‘609 of the total energy,
potential and kinetic, of the relative motion of the constitu-
ents of the molecules.

§ 25. The method of treatment of Ex. 3 above, carried out
for a cluster of any number of atoms greater than iwo not in
one line, j+ 2 atoms, let us say, shows us that there are three
translational freedoms; three rotational freedoms, relatively
to axes through the inertial centre; and 37 vibrational free-
] 1
3(L+y)°
The values of £ —1 thus calculated for a triatomic and tetra-
tomic gas, and calculated as above in Ex. 3 for a diatomic

doms. Hence we have P = .—'_'{—(2, and we find k—1 =
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gas, are shown in the following table, and compared with the
results of observation for several such gases:

Values of £—1.

Gas.

According to the By

B.-M. doctrine. Observation.
Air 2 = 9857 408
H, N 40
0, ., 41
cl, ’ N 32
CO " ' 39
NO " . 39
Co, 1= 1667 30
N,O - “ 331
NH, 1 =-1111 311

It is interesting to see how the dynamics of Clausiuy’
theorem is verified by the results of observation shown in the
table. The values of £—1 for all the gases are less than 3,
as they must be when there is any appreciable energy of
rotation or vibration in the molecule. They are different for
different diatomic gases; ranging from *41 for oxygen to *32
for chlorine, which is quite as might be expected, when we
consider that the laws of force between the two atoms may
differ Jargely for the different kinds of atoms. The values of
k—1 are, on the whole, smaller for the tetratomic and triato-
mic than for the diatomic gases, as might be expected from
consideration of Clausius’ principle. It is probable that the
differences of ¥—1 for the different diatomic gases are real,
although there is considerable uncertainty with regard to the
observational results for all or some of the gases other than
air. It is certain that the discrepancies irom the values,
caleulated according to the Boltzmann-Maxwell doctrine, are
real and great; and that in each case, diatomic, triatomic,
and tetratomic, the doctrine gives a value for k—1 much
smaller than the truth.

§ 26. But, in reality, the Boitzmann-Maxwell doctrine errs
enormously more than is shown in the preceding table.
Spectrum analysis showing vast numbers of lines for each
gas makes it certain that the numbers of freedoms of the
constituents of each molecule is enormously greater than
those which we have been counting, and therefore that unless
we attribute vibratile quality to each individual atom, the

Piil. Mag. 8. 6. Vol. 2. No. 7. July 1901. C
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molecule of every one of the ordinary gases must have a
vastly greater number of atoms in its constitution than those
hitherto reckoned in regular chemical doctrine. Suppose,
for example, there are forty-ome atoms in the molecule of
any particular gas; if the doctrine were true, we should have
Jj=389. Hence there are 117 vibrational freedoms, so that
there might be 117 visible lines in the spectrum of the gas;
T%Gz '0083. There is, in fact, no
possibility of reconciling the Boltzmann-Maxwell doctrine
with the truth regarding the specific heats of gases.

§ 27. It is, however, not quite possible to rest contented
with the mathematical verdict not proven, and the experi-
mental verdict not true, in respect to the Boltzmann.-Maxwell
doctrine. I have always feli that it should be mathemati-
cally tested by the consideration of some particular case.
Even if the theorem were true, stated as it was somewhat
vaguely, and in such general terms that great difficulty has
been felt as to what it is really meant o express, it would be
very desirable to see even one other simple case, besides that
original one of Waterston’s, clearly stated and tested by pure
mathematics. Ten years ago*, I suggested a number of test-
cases, some of which have been courteously considered by
Boltzmann ; but no demonstration either of the truth or
untruth of the doctrine as applied to any one of them has
hitherto been given. A year later, I suggested what seemed
to me a decisive test-case disproving the dectrine; but my
statement was quickly and justly eriticised by Boltzmann
and Poincaré; and more recently Lord Rayleight has shown
very clearly that my simple test-case was quite indecisive.
This last article of Rayleigh’s has led me to resume the
consideration of several classes of dynamical problems, which
bad occupied me more or less at various times during the last
twenty years, each presenting exceedingly interesting features
in connection with the double question: Is this a case which
admits of the application of the Boltzmann-Maxwell doctrine;
and if so, is the doctrine true for it ?

§ 28. Premising that the mean kinetic energies with which
the Boltzmann-Maxwell doctrine is concerned are time-
integrals of energies divided by totals of the times, we
may conveniently divide the whole class of problems, with

and we have £t — 1 =

* ¢ On some Test Cases for the Maxwell-Boltzmann Doctrine regarding
Distribution of Energy.” Proc. Roy. Soc., June 11, 1891.

t Phil. Mag., vol. xxxiii. 1892, p. 356. “ Remarks on Maxwell’s In-
vestigation respecting Boltzmann’s Theorem.”
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reference to which the doctrine comes into question, into two
classes.

Class I. Those in which the velocities considered are either
constant or only vary suddenly-—that is to say, in infinitely
small times—or in times so short that they may be omitted
from the time-integration. To this class belong:

(a) The original Waterston-Maxwell case and the collisions
of 1deal rigid bodies of any shape, according to the assumed
law that the translatory and rotatory motions lose no energy
in the collisions.

(b) The frictionless motion of one or more particles con-
strained to remain on a surface of any shape, this surface
being either closed (commonly called finite though really
endless), or being a finite area of plane or curved surface,
bounded like a billiard-table, by a wall or walls, from which
impinging particles are reftected at angles equal to the angles
of incidence.

(¢) A closed surface, with non-vibratory particles moving
within it freely except during impacts of particles against
one another or against the bounding surface.

(d) Cases such as (a), (b), or (¢), with impacts against
boundaries and mutual impacts between particles, softened
by the supposition of finite forces during the impacts, with
only the condition that the durations of the impacts are so
short as to be practically negligible in comparison with the
durations of free paths.

Class II. Cases in which the velocities of some of the
particles concerned sometimes vary gradually ; so gradually
that the times during which they vary must be included in
the time-integration. To this class belong examples such as
(d) of Class I. with durations of impacts not negligible in the
time-integration.

§ 29. Consider first Class I. (b) with a finite closed surface
as the field of motion and a single particle moving on it. If
a particle is given, moving in any direction through any
point I of the field, it will go on for ever along one deter-
minate geodetic line. The question that first occurs is, Does
the motion fulfil Maxwell’s condition (see § 18 above) ? that
is to say, for this case, If we go along the geodetic line long
enough, shall we pass infinitely nearly to any point Q what-
ever, ineluding I, of the surface an infinitely great number
of times in all directions? This question cannot be answered
in the affirmative without reservation. Ifor example, if the
surface be exactly an ellipsoid it must be answered in the
negafive, as is proved in the following §§ 30, 31, 32.

C2
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§ 30. Let AA’, BB/, CC/, be the ends of the greatest, mean,
and least diameters of an ellipsoid. TLet U; U, U; U, be the
umbilics in the arcs AC, CA/, A’C’, C’A. A known theoremn
in the geometry of the ellipsoid tells us, that every geodetic
through U, passes through Us, and every geodetic through
U, passes through U,. This statement regarding geodetic
lines on an ellipsoid of three unequal axes is illustrated by
fig. 1, a diagram showing for the extreme case in which the
shortest axis is zero, the exact construction of a geedetic
through U, which is a focus of the ellipse shown in the
diagram. U, C, U, being infinitely near to U, €, Uy
respectively are indicated by double letters at the same points.
Starting from U, draw the geodetic U,QUs ; the two parts

Fig. 1.

of which U;Q and QU are straight lines. 1t is interesting
to remark that, in whatever direction we start from Uy, if we
continue the geodetic through Uj;, and on through U, again
and so on endlessly, as indicated in the diagram by the
straight lines U;QU;Q'U,Q"U,Q", and so on, we come very
quickly to lines approaching successively more and more
nearly to coincidence with the major axis. At every point
where the path strikes the ellipse it is reflected at equal
angles to the tangent. The construction is most easily made
by making the angle between the reflected path and a line to
one focus, equal to the angle between the incident path and
a line to the other focus.

§ 31. Returning now to the ellipsoid :—From any point I,
between U, and U,, draw the geodetic IQ, and produace it
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through () on the ellipsoidal surface. It must cut the arc
A’CVA at some point between Uz and U, and, if continued
on and on, it must cut the ellipse ACAC'A successively
between U; and U,, or between Uj and U, ; never between
U, and U, or Uy and U,. This, for the extreme case of
the smallest axis zero, is illustrated by the path IQQ'Q”Q"!
Q"Q" in fig. 2.

§ 32. It now, on the other hand, we commence a geodetic
through any pomt J between U, and Uy, or between U, and
Us, it will never cut the principal section containing the
umbilicus, either between U; and U, or between U3 and U.,.
This, for the extreme case of CC'=0, is illustrated in fig. 3

Fig. 2,

§ 33. Tt seems not improbable that if the figure deviates by
ever so little from being exactly ellipsoidal, Maxwell's condi-
tion might be fulfilled. It seems indeed quite probable that
Maxwell’s condition (see §§ 13, 29, above) is fulfilled by
geadetic on a closed surface of any shape in general, and that
cxeceptional cases, in which the question of §29 is to be
answered in the negative, are merely particular surfaces of
definite shapes, infinitesimal deviations from which wiil allow
the question to be answered in the affirmative.

§ 34. Now with an affirmative answer to the question—is
Maxwell’s condition fulfilled ?—what does the Boltzmann-
Maxwell doctrine assert in respect to a geodetic on a closed
surface ?  The mere wording of Maxw ell’s statement, quoted
in §13 above, is not applicable to this case, but the meaningr
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of the doetrine as interpreted from previous writings both of
Boltzmann and Maxwell, and subsequent writings of Boltz-
mann, and of Rayleigh *, the most recent supporter of the
doctrine, is that a single geodetic drawn long enough will not
only fulfil Maxwell’s eondition of passing infinitely near to
every point of the surface in all directions, but will pass with
equal frequencies in all directions ; and as many times within
a certain infinitesimal distance +8 of any one point P as of
any other point P’ anywhere over the whole surface. This, if
trne, wonld be an exceedingly interesting theorem.

§ 35. I bave made many efforts to test it for the case in
which the closed surface 13 reduced to a plane with other
boundaries than an exact ellipse (for which, as we have seen

Fig. 3.

QVII

in §§ 30, 31, 32, the investigation fails through the non-
fulfilment of Maxwell’s preliminary condition). Every such
case gives, as we have seen, straight lines drawn across the
enclosed area turned on meeting the boundary, according to
the law of equal angles of incidence and reflection, which
corresponds also to the case of an ideal perfectly smooth:
non-rolating billiard-ball moving in straight lines except
when it strikes the boundary of the table ; the boundary
being of any shape whatever, instead of the ordinary rect-
angular boundary of an ordinary billiard-table, and being
perfectly elastic. An interesting illustration, easily seen

* Phil. Mag., January 1£00.
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through a large lecture-hall, is had by taking a thin wooden
board, cut to any chosen shape, with the corner edges of the
boundary smoothly rounded, and winding a stout black cord
round and round it many times, beginning with one end fixed
to any point, I, of the board. If the pressure of the cord on
the edges were perfectly frictionless, the cord would, at every
turn round the border, place itself so as to fulfil the law of
equal angles of incidence and reflection, modified in virtue
of the thickness of the board. For stability, it would be
necessary to fix points of the cord to the board by staples
pushed 1 over it at sufficiently frequent intervals, care being
taken that at no point is the cord distnrbed from its proper
straight line by the staple. [Boardsof a considerable variety

Fig. 4.

of shape with cords thus wound on them were shown as
illustrations of the lecture. ]

§ 36. A very easy way of drawing accurately the path of a
particle moving in a plane and retlected from a bounding
wall of any shape, provided ounly that it is not concave
externally in any part, is furnished by a somewhat interesting
kinematical method illustrated by the accompanying diagram
(ig. 4). It is easily realized by using two equal and similar
pieces of board, cut to any desired figure, one of them being
turned upside down relatively to the other, so that when the
two are placed together with corresponding points in contact,
each is the image of the other relative to the plane of contact
regarded as amirror. Sufliciently close corresponding points
should be accurately marked on the boundaries of the two
figures, and this allows great accuracy to be obtained in the
drawing of the free path after each reflection, The diagram
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shows consccutive free paths 74:6—32'9 given, and 32'9—
54:7, found by preducing 74:6—32'9 through the point of
contact. The process involves the exact measurement of the
length ()—say to three significant figures—and its inclina-
tion (0) to a chosen line of reference XX'. The summations
3 I cos 20 and = [ sin 20 give, as explained below, the
difference of time-integrals of kinetic energies of component
motions parallel and perpendicular respectively to XX/, and
parallel and perpendicular respectively to KK/, inclined at
45° to XX, From these ditferences we find (by a pro-
cedure equivalent to that of finding the principal axes of an
ellipse) two lines at right angles to one another, such that
the time-integrals of the components of velocity parallel to

Fig. 5.

them are respectively greater than and less than those of the
components parallel to any other line. [This process was
illustrated by models in the lecture.]

§ 37. Virtually the same process as this, applied to the case
of a scalene triangle ABC (in which BC=20 centimetres
and the angles A=97° B=29%5, C=53%5), was worked
out in the Royal Institution during the fortnight after the
lecture, by Mr. Anderson, with very interesting results. The
length -of each free path (I}, and its inclination to BC (6),
reckoned acute or obtuse according to the indications in the
diagram (fig. 5), were measured to the nearest millimetre and
the nearest integral degree. The first free path was drawn
at random, and the continuation, through 599 reflections (in
all 600 paths), was drawn in a manner illustrated by fig. 5,
which shows, for example, a path PQ on one triangle con-
tinued to QR on the other. 'The two when folded together
round the line AB show a path PQ, continued on QR after
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reflection. For each path 7 cos 26 and [ sin 260 were calcu-
Iated and entered in tables with the proper algebraic signs.
Thus, for the whole 600 paths, the following summations
were found :—

21=3298; Slcos20= +1288; Slsin 26=—201"9.

Remark, now, if the mass of the moving particle is 2, and
the velocity one centimetre per second, Zlcos 26 is the
excess of the time-integral of kinetic energy of component
motion parallel to B( above that of component motion
perpendicular to BC, and 31 sin 24 is the excess of the time-
mtegral of kinetic energy of component motion perpendicular
to KK’ above that of component motion parallel to KK’ ;
KK’ being inclined at 45° to BC in the direction shown in
the diagram. Hence the positive value of 3/ cos 26 indicates
a preponderance of kinetic energy due to component motion
parallel to BC above that of component motion perpendicular
to BC; and the negative sign of Z(sin 26 shows prepond-
erance of kinetic energy of component motion parallel to
KK, above that of component motion perpendicular to KK'.
Deducing a determination of two axes at right angles to each
other, corresponding respectively to maximum and minimum
kinetic energies, we find that LI/, being inclined to KK'in the

direction shown, at an angle = tan”l—i—?)—?—:g, is what we may

call the axis of maximum energy, and a line perpendicular to
LL’ the axis of minimum energy; and the excess of the
time-integral of the energy of component velocity parallel to
LI/ exceeds that of the component perpendicular to LL' by
2394, being A/1288¢+ 20194 This is 7°25 per cent. of the
total of ={ which is the time-integral of the total energy.
Thus, in our result, we find a very notable deviation from the
Boltzmann-Maxwell doetrine, which asserts for the present
case that the time-integrals of the component kinetic energies
are the same for all directions of the component. 'Lhe
percentage which we have found is not very large ; and,
most probably, summations for several successive 600 flights
would present considerable differences, both of the amount
of the deviation from equality and the direction of the axes
of maximum and minimum energy. Still, I think there is a
strong probability that the disproof of the Boltzmann-Maxwell
doctrine is genuine, and the discrepance is somewhat approx-
imately of the amount and direction indicated. I am sup-
ported in this view by scrutinizing the thirty sums for
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successive sets of twenty flights : thus I find 2I cos 26 to be
positive for eighteen out of thirty, and Zlsin 26 to be nega-
tive for nineteen out of the thirty.

§ 38. A very interesting test-case is represented in the
accompanying diagram, (fig. 6)—a circular boundary of semi-

Fig. 6.

circular corrugations. In this case it is obvious from the
symmetry that the time-integral of kinetic energy of com-
ponent motion parallel to any straight line must, in the
long run, be equal to that parallel {o any other. But the
Boltzmann-Maxwell doctrine asserts, that the time-integrals
of the kinetic energies of the two components, radial and
transversal, according to polar coordinates, would be equal.
To test this, I have taken the case of an infinite number of
the semicircular corrugations, so that in the time-integral it
is not necessary to include the times between successive
impacts of the particle on any one of the semicircles. In
this case the geometrical construction would, of course, fail
to show the precise point Q at which the free path would
cut the diameter AB of the semicircular hollow to which it is
approaching ; and I have evaded the difficulty in a manner
thoroughly suitable for thermodynamic application such as
the kinetic theory of gases. I arranged to draw lots for 1
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out of the 199 points dividing AB into 200 equal parts.
This was done by taking 100 cards*, 0, 1..... 98, 99, to
represent distances from the middle point, and, by the toss of
a coin, determining on which side of the middle point it was
to be (plus or minus for head or tail, frequently changed to
avoid possibility of error by bias). The draw for one of the
hundred numbers (0 . . .. 99) was taken after very thorough
shuffling of the cardsin each case. The point of entry having
been found, a large-scale geometrical construction was used
to determine the successive points of impact and the inclina-
tion € of the emergent path to the diameter AB. The inclina-
tion of the entering path to the diameter of the semicircular
hollow struck at the end of the flight, has the same value 6.
If we call the diameter of the large circle unity, the length
of each flight is sin#. Hence, if the velocity is nnity and
the mass of the particle 2, the tine-integral of the whole
kinetic energy is sin §; and it is easy to prove that the time-
integrals of the components of the velocity, along and per-
pendicular to the line from each point of the path to
the centre of the large circle, are respectively #cos 6, and
sin @—6@cos 8. The excess of the latter above the former is
sin #—260 cos §, By summation for 143 flights we have
found,
2 sin@=1213 ; 256 cos§=1083;

whence,

3 sin 0—23.0 cos §=130.

This is a notable deviation from the Boltzmann-Maxwell
doctrine, which makes = (sin #—8 cos ) equal to 20 cos 6.
We have found the former to exceed the latter by a difference
which amounts to 10-7 of the whole =, sin 6.

Out of fourteen sets of ten flights, I find that the time-
integral of the transverse component is less than half the
whole in twelve sets, and greater in only two. This seems to
prove beyond doubt that the deviation from the Boltzmann-
Maxwell doctrine is genuine ; and that the time-integral of
the transverse component is certainly smaller than the time-
integral of the radial component.

* T had tried numbered billets (small squares of paper) drawn from a
bowl, but found this very unsatisfactory. The best mixing we could
make in the bowl seemed to be guite insufficient to secure equal chances
for all the billets. Full sized cards like ordinary playing-cards, well
shuffled, seemed to give a very fairly equal chance to every card. Even
with the full-sized cards, electric attraction sometimes intervenes and
causes two of them to stick together. In using one's fingers to mix dry
billets of card, or of paper, in a bowl, very considerable disturbance may
be expected from clectrification.
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§ 39. It is interesting to remark that our
present result is applicable (see § 38 above) to
the motion of a particle, flying about in an
enclosed space, of the same shape as the surface
of a marlin-spike (fig. 7). Symmetry shows,
that the axes of maximum or minimum kinetic
energy must be in the direction of the middle
line of the length of the figure and perpen-
dicular to it. Our -conclusion is that the time-
integral of kinetic energy is maximum for the
]onaltudmal component and minimum for the
transverse. In the series of flights, corre-
sponding to the 143 of fig. 6, which we have
investigated, the number of flights is of course
many times 143 in fig. 7, because of the
reflections at the straight sides of the marlin-
spike. It will be understood, of course, that
we are considering merely motion in one plane
through the axis of the marlin-spike.

§40. The most difficult and seriously trouble-
some statistical investigation in respect to the
partition of energy which I have hitherto
attempted, has been to find the proportions of
translational and rotational energies in various
cases, in each of which a IOtdtOI' experiences
multitudinons reflections at two fixed parallel
planes between which it moves, or at one plane
to which it is brought back by a constant force
through its centre of inertia, or by a force
varying directly as the distance from the plane.
Two different rotators were considered, one of
them consisting of two equal masses, fixed at
the ends of a rigid massless rod, and each
particle reflected on striking either of the
planes ; the other consisting of two masses, 1
and 100, fixed at the ends of a rigid massless
rod, the smaller mass passing freely across the
plane without experiencing any force, while
the greater is reflected every time it strikes.
The second rotator may be described, in some
respects more simply, as a hard massless ball
having a mass = | fixed anywhere eccentric-
ally within it, and another mass =100 fixed at
its centre. It may be called, for brevity, a
biassed ball.
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§ 41. In every case of a rotator whose rotation is changed
by an impact, a transcendental problem of pure kinematics
essentially occurs to find the time and configuration of the
first impact ; and another such problem to find if there is a
second impact, and, if so, to determine it. Chattering col-
lisions of one, two, three, four, five, or more impacts, are
essentially liable to occur, even to the extreme case of an
infinite number of impacts and a collision consisting virtually
of a gradually varying finite pressure. Three is the greatest
number of impacts we have found in any of our calculations.
The first of these transcendental problems, occurring essen-
tially in every case, consists in finding the smallest value of ¢
which satisfies the equation

§—i= 2% (1—sin 6);

where  is the angular velocity of the rotator before collision;
a is the length of a certain rotating arm ; 7 its inclination to
the reflecting plane at the instant when its centre of inertia
crosses a plane I, parallel to the reflecting plane and distant «
from it ; and v is the velocity of the centre of inertia of the
rotator. This equation is, in general, very easily solved by
calculation (trial and error), but more quickly by an obvious
kinematic method, the simplest form of which is a rolling
circle carrying an arm of adjustable length. In our eatliest
work we performed the solution arithmetically, after that
kinematically. If the distance between the two parallel
planes is moderate in comparison with 2a (the effective dia-
meter of the rotator), ¢ for the beginning of the collision with
one plane has to be calculated from the end of the preceding
collision against the other plane by a transcendental equation,
on the same principle as that which we have just been con-
sidering. But I have supposed the distance between the two
planes to be very great, practically infinite, in comparison
with 2a, and we have therefore found i by lottery for each
collision, using 180 cards corresponding to 180° of angle. In
the case of the biassed globe, different equally probable
values of ¢ through a range of 360° was required, and we
found them by drawing from the pack of 180 cards and tossing
a coin for plus or minus.

§ 42. Summation for 110 flights of the rotator, consisting
of two equal masses, gave as the time-integral of the whole
energy, 20003, and an excess of rotatory above translatory,
42:05. This is just 21 per cent. of the whole; alarge deviation
from the Boltzmanr-Maxwell doctrine, which makes the time-
integrals of translatory and rotatory energies equal.
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$ 43. Inthe solution for the biassed ball (masses 1 and 100)
we found great irregularities due to ““runs of luck " in the
toss for plus or minus, especially when there was a succession
of five or six pluses or five or six minuses. We therefore,
after calculating a sequence of 200 flights with angles each
determined by lottery, calculated a second sequence of 200
flights with the equally probable set of angles given by the
same numbers with altered signs. The summation for the
whole 400 gave 55555 as the time-integral of the whole
energy, and an excess, 82', of the time-integral of the
translatory, over the time-integral of the rotatory energy.
This is nearly 15 per cent. We cannot, however, feel great
confidence in this result, because the first set of 200 made
the translatory energy less than the rotitory energy by a
small percentage (2:3) of the whole, while the second 200
gave an excess of translatory over rotatory amounting to
359 per cent. of the whole.

§ 44. All our examples considered in detail or worked out,
hitherto, belong to Class I. of § 28. Asa first example of
Class 11., consider a case merging into the geodetic line on a
closed surface S. Instead of the point being constrained to
remain on the surface, let it be under the influence of a field
of force, such that it is attracted towards the surface with a
finite force, if it is placed anywhere very near the surface on
either side of it, so that if the particle be placed on S and
projected perpendicularly to it, either inwards or outwards,
it will be brought back before it goes farther from the surface
than a distance /4, small in comparison with the shortest radius
of curvature of any part of the surface. The Boltzmann-
Maxwell doctrine asserts that the time-integral of kinetic
energy of component motion normal to the surface, would be
equal to half the kinetic energy of component motion at right
ungles to the normal; by normal being meant a straight line
drawn from the actual position of the point at any timne per-
pendicular to the nearest part of the surface S. This, if true,
would be a very remarkable proposition. If % is infinitely
small, we have simply the mathematical condition of constraint
toremain on the surface, and the path of the particle is exactly
a geodetic line. If the force towards S is zero, when the
distance on either side of 8 is +4A, we have the case of a
particle placed between two guiding surfaces with a very
small distance, 2k, between them. If 8, and therefore
each of the guiding surfaces, is in every normal section
convex outwards, and if the particle is placed on the outer
guide-surface, and projected in any direction in it, with
any velocity, great or small, it will remain on that guide-
surface for ever, and travel along a geodeti: line. 1f now
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it be deflected very slightly from motion in that surface,
so that it will strike against the inner guide-surface, we may
be quite ready to learn, that the energy of knocking about
between the two surfaces, will grow up from something very
small in the beginning, till, in the long run, its time-integral
is comparable with the time-integral of the energy of com-
ponent motion parallel to the tangent plane of either surface.
But will its ultimate value be exactly half that of the tan-
gential energy, as the doctrine tells us it would be? We are,
however, now back to Class I.; we should have kept to
Class II., by making the normal force on the particle always
finite, however great.

§ 45. Very interesting cases of Class 1L, § 23, occur to us
readily in connexion with the cases of Class I. worked out in
§§ 38, 41, 42, 43.

§ 46. Let the radius of the large circle in § 33 become
infinitely great: we have now a plane F (Hoor) with semi-
cireular cylindric hollows, or semicircular hollows as we shall
say for brevity; the motion being confined to one plane per-
pendicular to F, and to the edges of the hollows. TFor defi-
niteness we shall take for ¥ the plane of the edges of the
hollows. Instead now of a particle after collision flying
along the chord of the circle ot § 38, it would go on for ever
in a straight line. To bring it back to the plane F, let it be
acted on either («) by a force towards the plane in simple
proportion to the distance, or (8) by a constant force. This
latter supposition () presents to us the very interesting case
of an elastic ball bouncing from a corrugated floor, and
describing gravitational parabolas in its successive flights, the
durations of the different flights being in simple proportion to
the component of velocity perpendicular to the plane F. The
supposition () is purely ideal ; but it is interesting because
it gives a half curve of sines for each flight, and makes the
times of flight from F after a collision and back again to F
the same for all the flights, whatever be the inclination on
Jeaving the floor and returning to it. The supposition (8) is
illustrated in fig. 8, with only the variation that the corru-
gations are convex instead of concave, and that two vertical
planes are fixed to reflect back the particle, instead of allowing
it to travel indefinitely, either to right or to left.

§ 47. Let the rotator of §§ 41 to 43, instead of bouncing
to and fro hetween two parallel planes, impinge only on one
plane F, and let it be brought back by a force through its
centre of inertia, either (a) varying in simple proportion to
the distance of the centre of inertia from F, or (B) constant.
Here, as in § 46, the times of flightin case («) are all the same,
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and in (3) they are in simple proportion to the velocity of its
centre of inertia when it leaves ¥ or returns to it.

Fig. 8.

L

§ 48. In the cases of §§ 46, 47, we have to consider the
time-integral for each flight of the kinetic energy of the
component velocity of the particle perpendicular to F, and of
the: whole velocity of the centre- of inertia of the rotator,
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which is itself perpendicular to F. If ¢ denotes the velocity
perpendicalar to F of the particle, or of the centre of inertia
of the rotator, at the instants of crossing F at the beginning
and end of the flight, and if 2 denotes the mass of the particle
or of the rotator so that the kinetic energy is the same as the
square of the velocity, the time-integral is in case () £¢*T
and in case (8)4¢®T, the time of the flight being denoted
in each case by T. In both (z) and (B), § 46, if we call 1
the velocity of the particle, which is always the same, we have
¢?=sin? 6, and the other component of the energy is cos® 6.
In § 47 it is convenient to call the total energy 1; and thus
1—4® is the total rotational energy, which is constant
throughout the flight. Hence, remembering that the times
of flight are all the same in case (2) and are proportional to
the value of ¢ in case (8); in case (a), whether of § 46 or
§ 47, the time-integrals of the kinetic energies to be compared
are as $3¢° to 3(1—¢%), and in case (B) they are as }3¢°
and 2Zg(1—¢?).
Hence with the following notation—

In § 46 {Time—integral of kinetic energy perpendicular to F,=V

9 ’ s parallel to F,=U
, translatory energy=YV,
Ing 47{ ; rotatory 5 =R,
we have
2(8¢g%2—1) .
V—T = E‘E_fg—%_q’% in case (=),
VIO ZiEd-
q—34)
_2(34-D
v_r | TS(=1p 7 @

- 3(¢—397) 7

§ 49. By the processes described above, ¢ was calculated
for the single particle and corrugated floor (§ 46), and for
the rotator of two equal masses each impinging on a fixed
plane (§§ 41, 42), and for the biassed ball (central and
eccentric masses 100 and 1 respectively, §§ 41, 43). Taking
these values of ¢, summing ¢, ¢?, and ¢* for all the flights, and
using the results in § 48, we find the following six results :

Phil. Mag. 8. 6. Vol. 2. No. 7. July 1901. D
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Single particle bounding from corrugated floor (semicircular

hollows), 143 flights :—

V—U [ =+-197 for isochronous sinusoidal flights.
V4T | =-+-136 for gravitational parabolic

b3
Rotator of two equal masses, 110 flights :—

V~R [ =—"179 for isochronous sinusoidal flights.

V+R = —"150 for gravitational parabolic |,
Biassed ball, 400 flights :—

V—R f = +-025 for isochronous sinusoidal flights.

V+ R L=—"014 for gravitational parabolic |,

The smallness of the deviation of the last two results from
what the Boltzmann-Maxwell doctrine makes them, is very
remarkable when we compare it with the 15 per cent. which
we have found (§ 43 above) for the biassed ball bounding free
from force, to and fro between two parallel planes.

§ 50. The last case of partition of encrgy which we have
worked out statistically, relates to an impactual problem
belonging partly to Class I., § 28, and partly to Class II.
It was designed as a nearer approach to practical application
in thermodynamics than any of those hitherto described. It
is, in fact, a one-dimensional illustration of the kinetic theory
of gases. Suppose a row of a vast number of atoms, of equal
masses, to be allowed freedom to move only in a straight line
between fixed bounding planes L. and K. Let P the atom
next K be caged between it and a parallel plane C, at a
distance from it very small in comparison with the average
of the free paths of the other particles ; and let Q, the atom
next to P, be perfectly free to cross the cage-front C, without
experiencing force from it. Thus, while Q gets freely into
the cage to strike P, P cannot follow it out beyond the cage-
front. The atoms being all equal, every simple impact would
produce merely an interchange of velocities between the
colliding atoms, and no new velocity could he introduced, if
the atomns were perfectly hard (§ 16 above), because this
implies that no three can be in collision at the same time.
[ do not, however, Jimit the present investigation to perfectly
hard atoms. But, to simplify our calculations, we shall
<uppose P and Q to be infinitely hard. All the other
atoms we shall suppose to have the property defined in § 21
above. They may pass through one unother in a simple
collision, and go asunder each with its previous velocity
unaltered, if the differential velocity be sufficieatly great ;



Dynamical Theory of Heat and Light. 35

they must recoil from one another with interchanged veloci-
ties if the initial differential velocity was not great enough to
cause them to go through one another. Fresh velocities will
generally be introduced, by three atoms being in collision at
the same time, so that even if the velocities were all equal to
begin with, inequalities would supervene in virtue of three or
more atoms being in collision at the same time ; whether the
initial differential velocities be small enough to result in two
recoils, or whether one or both the mutual approaches lead to
a passage or passages through one another. Whether the
distribution of velocities, which must ultimately supervene,
is or is not according to the Maxwellian law, we need not
decide in our minds ; but, as a first example, I have supposed
the whole multitude to be given with velocities distributed
among them according to that law (which, if they were
infinitely hard, they would keep for ever after); and we
shall further suppose equal average spacing in different
parts of the row, so that we need not be troubled with the
consideration of waves, as it were of sound, running to and
fro along the row,

§ 51. For our present problem we require two lotteries, to
find the influential conditions at each instant, when Q enters
P’s cage—lottery I. for the velocity (v) of Q at impact ;
lottery I1. for the phase of P’s motion. For lottery L. (aiter
trying 837 small squares of paper with velocities written on
them and mixed in a bowl, and finding the plan unsatis-
factory), we took nine stiff cards, numbered 1,2 ....9, of
the size of ordinary playing-cards, with rounded -corners,
with one hundred numbers written on each in ten lines of
ten numbers, The velocities on each card are shown in the
following table. The number of times each velocity oceurs
was chosen to fulfil as nearly as may be the Maxwellian law,

which is Odve™ * = the number of velocities between v+ 4dv
and v—3dv. We took k=1, which, if dv were infinitely
small, would make the mean of the squares of the velocities
equal exactly to "5 ; we took dv=-1and Cdv=108, to give,
as nearly as circumstances wounld allow, the Maxwellian law,
and to make the total number of different velocities 900.
The sum of the squares of all these 900 velocities is 4684,
which divided by 900 is -52. In the practice of this lottery,
the numbered cards were well shuffled and then one was
drawn ; the particular one of the hundred velocities on this
card to be chosen was found by drawing one card from a
pack of one hundred numbered 1, 2. .. 99, 100. In lottery
II. a pack of one hundred cards is used to draw one of one
D2
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hundred decimal numbers from 01 to 1:00. The decimal
drawn, called «, shows the proportion of the whole period of
P from the cage-front C, to K, and back to C, still unper-
formed at the instant when Q crosses C. Now remark, that

TABLE SHOWING THE NUMBER OF TUE DIFFERENT VELOCITIES ON TIIE
DirrerENT CARDS.

Velocity. | 1 | -2 '3;‘4 51678911011 1-2[13|14 1'5‘1'6!1'7.1'8 19 2‘0‘2‘1 22
Card 1 100

.2 | 703

, 3 | |10

s 4 9191 i

. 5 18415

. 6 6040

b T 26/57[17

, 8 31 40| 29 | i

9 3/26/19/15/11/9 (614 3 2 115

) 107103/99 52184 75{6657148| 40 | 32| 26 11915111 9 | 6 | 4[5 2|1 |1 Joo0

L |

if Q overtakes P in the first half of its period, it gives its
velocity, v, to P and follows it inwards ; and therefore there
must be a second impact when P meets it after reflexion
trom K and gives it back the velocity » which it had on
entering. If Q meets P in the second half of its period, @
will, by the first impact, get P’s original velocity, and may
with this velocity escape from the cage. But it may be over-
taken by P before it gets out of the cage, in which case it
will go away from the cage with its own original velocity »
unchanged. This occurs always if, and never unless, u is
less than va ; P’s velocity being denoted by u, and Q’s by ».
This case of Q overtaken by P can only occur if the entering
velocity of Q is greater than the speed of P before collision.
Except in this case, P’s speed is unchanged by the collision.
Hence we see, that it is only when P’s speed 1s greater than
Q’s before collision, that there can be interchange, and this
interchange leaves P with less speed than Q. If every
collision involved interchange, the average velocity of P
would be equalized by the collisions to the average veloeity
of Q, and the average distribution of different velocities
would be identical for Q@ and P. Non-fulfilment of this
equalizing interchange can, as we have seen, only occur when
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Qs speed is less than P’s, and therefore the average speed
and the average kinetic energy of P must be less than the
average kinetic energy of Q.

§ 52. We might be satisfied with this, as directly nega-
tiving the Boltzmann-Maxwell doctrine for this case. It is,
however, interesting to know, not only that the average
kinetic energy of ) is greater than that of the caged atom,
but, further, to know how much greater it is. We have
therefore worked out summations for 300 collisions between
P and Q, beginning with u2="-5 (u="71), being approxi-
mately the mean of v* as given by the lottery. It would have
made no appreciable difference in the result if we had begun
with any value of u, large or small, other than zero. Thus,
for example, if we had taken 100 as the first value of w, this
speed wonld have been taken by Q at the first impact, and
sent away along the practically infinite row, never to be
heard of again; and the next value of u would bave been the
first value drawn by lottery for ». Immediately before each
of the subsequent impacts, the velocity of P is that which it
had from ) by the preceding impact. In our work, the
speeds which P actunally had at the first sixteen times of Q’s
entering the cage were 71, 5, *3, ‘2, ‘2, 1, *1, -2, 2, *5, *7,
‘2, *3, 6, 1'5, *5—from which we see how little effect the
choice of *71 for the first speed of P had on those that follow.
The summations were taken in successive groups of ten ; in
every one of these 3v? exceeded Su2. For the 300 we found
20*=148'53 and 3u?=6162, of which the former is 2-41
times the latter. The two ought to be equal according to
the Boltzmann-Maxwell doctrine. Dividing v by 300 we
find -495, which chances to more nearly the ‘5 we intended
than the *52 which is on the cards (§ 51 above). A still
greater deviation (2-71 instead of 2-41) was found by taking
2v® and Zu to allow for greater probability of impact with
greater than with smaller values of v ; u’ being the velocity
of P after collision with Q.

§ 53. We have seen in § 51 that Su? must be less than
So?, but it seemed interesting to find how much less it would
be with some other than the Maxwellian law of distribution
of velocities. We therefore arranged cards for a lottery,
with an arbitrarily chosen distribution, quite different from
the Maxwellian. Eleven cards, each with one of the eleven
numbers 1, 3.... 19, 21, to correspond to the different
velocities *1, *3 . ... 1'9, 2'1, were prepared and used
instead of the nine cards in the process described in § 51
above. In all except one of the eleven tens, 2! was greater
than 2u?, and for the whole 110 impacts we found Zv*=179-90,
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and Su2=97-66 ; the former of these is 1'84 times the
latter. In this case we found the ratio of Z¢® to Zu'% to
be 1-87.

§ 54. In conclusion, I wish to refer, in connexion with
Class 11., § 28, to a very interesting and important application
of the doctrine, made by Maxwell himself, to the equilibrium
of a tall column of gas under the influence of gravity. Take,
first, our one-dimensional gas of' § 50, consisting of a straight
row of a vast number of equal and similar atoms. Let now
the line of the row be vertical, and let the atoms be under
the influence of terrestrial gravity, and suppose, first, the
atoms to resist mutual approach, sutliciently to prevent any
one from passing through another with the greatest relative
velocity of approach that the total energy given to the
assemblage can allow. The Boltzmann-Maxwell doctrine
(§ 18 above), asserting as it does that the time-integral of
the kinetic energy is the same for all the atoms, makes the
time-average of the kinetic energy the same for the highest
as for the lowest in the row. This, if true, would be an
exceedingly interesting theorem. DBut now, suppose two
approaching atoms not to repel one another with infinite
force at any distance between their centres, and suppose
energy to be given to the multitude sufficient to cause
frequent instances of two atoms passing through one another.
Still the doctrine can assert nothing but that the time-
integral of the kinetic energy of any one atom is equal to
that of any other atom, which is now a self-evident pro-
position, because the atoms are of equal masses, and each one
of them in turn will be in every position of the column, high
or low. (If in the row there are atoms of different masses,
the Waterston-Maxwell doctrine of equal average energies
would, of course, be important and interesting.)

§ 55. But now, instead of our ideal one-dimensional gas,
consider a real homogeneous gus,in an infinitely hard vertical
tube, with an infinitely hard Hoor and roof, so that the gas
is under no influence from without, except gravity. First,
let there be only two or three atoms, each given with sufficient
velocity to fly against gravity from floor to roof. They will
strike one another occasionally, and they will strike the sides
and floor and roof of the tube much more frequently than one
another. The time-averages of their kinetic energies will be
equal. So will they be if there are twenty atoms, or a thousand
atoms, or a million, million, million, million, million atoms.
Now each atom will strike another atom much more frequently
than the sides or floor or rool of the tube. In the long run
each atom will be in every part of the tube as often as is
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every other atom. The time-integral of the kinetic energy
of any one atom will be equal to the time-integral of the
kinetic energy of any other atom. This truism is simply and
solely all that the Boltzmann-Maxwell doctrine asserts for a
vertical eolumn of a homogeneous monatomic gas. It is,
I believe, a general impression that the Boltzmann-Maxwell
doctrine, asserting a law of partition of the kinetic part of
the whole energy, includes obviously a theorem that the
average kinetic energy of the atoms in the upper parts of a
vertical column of gus, is equal to that of the atoms in the
lower parts of the column. Indeed, with the wording of
Maxwell’s statement, § 18, before us, we might suppose it to
assert that two parts of our vertical column of gas, if they
contain the same number of atoms, must have the same
kinetic energy, though they be sitnated, one of them near the
bottom of the column, and the other near the top. Maxwell
himself, in his 1866 paper (*The Dynamical Theory of
Gases”) *, gave an independent synthetical demonstration of
this proposition, and did not subsequently, so far as I know,
regard it as immediately deducible from the partltlonal
doctrine generalized by Boltzmann and himselt several years
after the date of that paper.

§ 56. Both Boltzmann and Maxwell recognized the ex-
perimental contradiction of their doctrine presented by the
kinetic theory of gases, and felt that an explanation of this
incompatibility was imperatively called for. For instance,
Maxwell, in a lecture on the dynamical evidence of the
molecular constitution of bodies, given to the Chemical
Society, Feb. 18, 1875, said : “I have put before you what
“T consider to be the greatest difficulty yet encountered by
“the molecular themy Boltzmann has suggested that we
“are to look for the explanation in the mutual action between
“the molecules and the ethereul medium which surrounds
“them. I am afraid, however, that if we call in the help of
“ this medium we shall only increase the calculated specific
“heat, which is already too great.” Rayleigh, who has for
the last twenty years been an unwavering supporter of the
Boltzmann-Maxwell doctrine, concludes a paper * On the Law
of Partition of Energy,” published a year ago in the Phil.
Mag., Jan. 1900, with the following words: * The difficulties
“ gonnected with the application of the law of equal partition
“ of energy to actual gases have long been felt. Inthe case of
“argon and helium and mercury vapour, the ratio of specific
 heats (1-67) limits the degrees of freedoms of each molecule

* Addition, of date December 17, 1866. Collected works, vol. ii. p. 76.
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“to the three required for translatory motion. The value
¢ (1-4) applicable to the principal diatomic gases, gives room
‘“for the three kinds of translation and for two kinds of
“rotation. Nothing is left for rotation round the line joining
“the atoms, nor for relative motion of the atoms in this line,
¢ BEven if we regard the atoms as mere points, whose rotation
“ means nothing, there must still exist energy of the last-
“mentioned kind, and its amount (according to law) should
“not be inferior.

“We are here brought face to face with a fundamental
¢ difficulty, relating not to the theory of gases merely, but
“rather to general dynamics. In most questions of dynamics,
“a condition whose violation involves a large amount of
¢ potential energy may be treated as a constraint. It is on
¢ this principle that solids are regarded as rigid, strings as
“inextensible, and so on. And it is upon the recognition
“of such constraints that Lagrange’s method is founded.
“ But the law of equal partition disregards potential energy.
“ However great may be the energy required to alter the
‘¢ distance of the two atoms in a diatomic molecule, practical
“rigidity is never secured, and the kinetic energy of the
“ relative motion in the line of junction is the same as if the
“tie were of the feeblest. The two atoms, however related,
“remain two atoms, and the degrees of freedom remain six
“in number.

“ What would appear to be wanted is some escape from
“the destructive simplicity of the general conclusion.”

The simplest way of arriving at this desired result is to
deny the conclusion; and so, in the beginning of the twentieth
century, to lose sight of a cloud which has obscured the
brilliance of the molecular theory of heat and light during
the last quarter of the nineteenth century.

1. The Absorption of the Ionized® Phosphorus
Fmanation in Tubes.—11, By C. Barust.

1. FOR reasons of both theoretical and practical import it
is next necessary to ascertain the precise conditions
under which the phosphorus nucleus vanishes on passing

* Whoever writes on subjects relating, like the present, to certain
features of ionization is obliged to make free use of the admirable work
(Thomson, C. T. R. Wilson, Townsend, Rutherford, Zeleny, and others),
which has been sent out by the Cavendish Laboratory under the direction
of Prof, J. J. Thomson. These researches, like those of Chattock, Elster
and Geitel, and others (¢f. H. Becquerel in ¢ Nature, Feb. 21st, p. 396,
1901), are so recent and well known that detailed reference would be
cumbersome ; but I desire to make my acknowledgments here.

t Communicated by the Author.






