下のソースプログラムをそのままテキストエディタ(メモ帳など)にコピー and ペースト すれば、簡単にコンパイルと実行できる。
(このプログラムは 単純な C 言語なので、このテキストエディタを "filename.c" とセーブしてコンパイルしてほしい。)
ここでは 1 MM = 1 × 10-14 meter という新しい単位を使用している。
このサンプルプログラムでは、実行すると、最初に 原子の種類を選ぶ。
炭素様原子 (= C, Si ) を計算するときは 最初に "0" の数値を入力するように。
もし 酸素様原子 (= O, Si )、ホウ素様原子 (= B, Al ) を計算するときは それぞれ "1" もしくは "2" を入力するように。
次に 中心電荷 Z と すべての価電子の全イオン化エネルギーを入力する。
これらの値から このプログラムは 正四面体状の炭素のポテンシャルエネルギーと力を計算する。
ビリアル定理 ( E = -T = 1/2 V ) を用いて、このプログラムは 1軌道に含まれるドブロイ波を計算する。
画面上には このドブロイ波の数 (= 約 2.0 ) と、各価電子と中心の原子核間の距離 (MM) が表示される。
#include <stdio.h>
#include <math.h>
int main(void)
{
int i;
double fig,Z,E,ke,r,F,nuc,radius,debroglie,a,wave;
double poten, kinetic,velo;
double me=9.1093826e-31;
double pai=3.141592653589793;
double epsi=8.85418781787346e-12;
double h=6.62606896e-34;
double ele=1.60217653e-19;
/* choose carbon-like = 0, oxygen-like = 1, boron like = 2 */
printf(" First, input 0, 1, or 2 to choose atoms. \n");
printf(" Carbon, Si = 0, Oxygen, S = 1, Boron, Al = 2 ? ");
scanf("%lf",&fig);
/* input central positive charge Z */
printf(" central charge Z ? ");
scanf("%lf",&Z);
/* input total ionization energy |E| eV */
printf(" total ionization energies |E| eV ? ");
scanf("%lf", &E);
printf(" \n");
ke=(ele*ele)/(4.0*pai*epsi);
poten = -2.0 * E * 1.602177e-19;
/* Carbon-like atoms ( C, Si ) */
/* length r from potenial V in tetrahedron */
r =(ke/poten) * (-(8.0*Z)/sqrt(6.0) + 3.0);
/* kinetic = total kinetic energy by Virial theorem */
kinetic=-0.5*poten;
velo=sqrt((kinetic)/(2.0*me)); /* velo = electron's velocity (m/s) */
/* F = force acting on each electron (N) */
F = (ke/(r*r))*(Z*2.0/3.0 - sqrt(6.0)/4.0 );
/* nuc = distance between electron and nucleus */
nuc=r*sqrt(6)/2.0;
radius=(me*velo*velo)/F; /* rotation radius from centrifugal force */
debroglie = h/(me*velo); /* de Broglie wavelength of electron */
wave=(2.0*pai*radius)/debroglie; /* wave's number in one orbit */
/* oxygen-like atoms ( O, S ) */
if ( fig == 1 ) {
/* a = distance between electron and nucleus */
a = (ke/poten)*(-6.0*Z + 12.0/sqrt(2)+1.5);
/* velo = veclocity of each electron 0-5 */
velo=sqrt(kinetic/(3.0*me));
/* F = force acting on each electron (N) */
F = (ke/(a*a))*(Z-2.0/sqrt(2)-0.25);
radius=(me*velo*velo)/F; /* rotation radius from centrifugal force */
debroglie = h/(me*velo); /* de Broglie wavelength of electron */
wave=(2.0*pai*radius)/debroglie; /* wave's number in one orbit */
nuc = a;
}
/* Boron -like atoms ( B, Al ) */
if ( fig == 2 ) {
/* r = distance between electron and nucleus */
r =(ke/poten) * (-(3.0*Z) + sqrt(3));
/* velo = velocity of each electron 0-2 */
velo=sqrt((2.0*kinetic)/(3.0*me));
/* F = force acting on each electron */
F = (ke/(r*r))*(Z - (1.0/sqrt(3)) );
radius=(me*velo*velo)/F; /* rotation radius from centrifugal force */
debroglie = h/(me*velo); /* de Broglie wavelength of electron */
wave=(2.0*pai*radius)/debroglie; /* wave's number in one orbit */
nuc = r;
}
nuc = nuc * 1.0e14; /* change meter to MM */
printf("de Broglie wave in one orbit : %.3f \n", wave);
printf("distance between electron and nucleus: %.2f ", nuc);
printf(" \n");
return 0;
}