Top page (correct Bohr model including helium).
Back to hydrogen molecule page.
If you copy and paste the program source code below into a text editor, you can easily compile and run this.
( This program is simple C language, so save this text editor as "filename.c", and compile it.)
Here we use the new unit of 1 MM = 1 × 10-14 meter.
In this program, first we input the internuclear distance (in MM ) of H2.
And then input y-coordinate "r" (in MM) , and x-coordinate "a" ( in MM ) of electron 1.
From the inputted values, this program outputs the binding energy (eV) of H2, total force acting on nucleus 1 (nucforce), x,y components of forces acting on electron 1 (= elefx, elefy ).
These forces are expressed as the ratio to the force between electron and nucleus of H atom's ground state.
From the force acting on electron and its velocity, we calculate the number of de Broglie wave in one orbit.
( Here Virial theorem E = -T = 1/2 V is used. )
"another x" means another x coordinate of electron 1 moving in the direction of force.
The initial x-coodinate is automatically increased per calculation until +100.
#include <stdio.h>
#include <math.h>
int main(void)
{
int i;
double nnuc,rr,aa,ke,r,nuc,a, rra,rrb,rrc;
double poten,ppot, kinetic,velo,binding,elefx,elefy,eleforce;
double radius, debroglie, wave, nucforce, anotherx;
double me=9.1093826e-31;
double pai=3.141592653589793;
double epsi=8.85418781787346e-12;
double h=6.62606896e-34;
double ele=1.60217653e-19;
double boh=5292.0*5292.0*1.0e-28; /* boh = ( Bohr radius )^2 */
/* input nuc, x, y coordinate */
printf(" Internuclear distance (MM) of H2 molecule ? ");
scanf("%lf",&nnuc);
printf(" r (MM) ? = y coordinate of electron 1 ");
scanf("%lf",&rr);
printf(" a (MM) ? = x coordinate of electron 1 ");
scanf("%lf", &aa);
printf(" \n");
r = rr * 1.0e-14; nuc = nnuc * 1.0e-14; /* change MM to meter */
ke = (ele*ele)/(4.0*pai*epsi);
for (i=1; i < 10 ;i++) { /* repeat until a=initial a+100 */
a=aa*1.0e-14;
rra=sqrt(a*a+r*r); /* rra =distance between electron 1 and n1 */
rrb=sqrt(r*r+(nuc-a)*(nuc-a)); /* rrb= between electron 1 and n2 */
rrc=sqrt(4*r*r+(nuc-2*a)*(nuc-2*a)); /* between two electrons */
poten=ke*(-2.0/rra-2.0/rrb+1.0/nuc+1.0/rrc); /* poten=potential energy (J) */
ppot=poten*6.241509*1.0e18; /* ppot = potential energy (eV) */
kinetic=-0.5*poten; /* kinetic = total kinetic energy of two electrons (J) */
velo=sqrt(kinetic/me); /* velo = electron's velocity (m/s) */
binding=-ppot*0.5-13.606*2; /* binding energy (eV) of H2 */
/* foeces acting on electron 1 ( x, -y directions ) */
elefx= -a/(rra*rra*rra) + (nuc-a)/(rrb*rrb*rrb) - (nuc-2*a)/(rrc*rrc*rrc);
elefy= r/(rra*rra*rra) + r/(rrb*rrb*rrb) - (2*r)/(rrc*rrc*rrc);
eleforce = ke*sqrt(elefx*elefx + elefy*elefy); /* total force */
radius=(me*velo*velo)/eleforce; /* rotation radius from centrifugal force */
debroglie = h/(me*velo); /* de Broglie wavelength of electron */
wave=(2*pai*radius)/debroglie; /* wave's number in one orbit */
nucforce= a/(rra*rra*rra)-1.0/(nuc*nuc)+(nuc-a)/(rrb*rrb*rrb);
nucforce=nucforce * boh; /* total force acting on nucleus 1 */
anotherx=a+(2.0*r*elefx)/elefy;
anotherx = anotherx * 1.0e14; /* another x coordinate of electron 1 */
elefx=elefx * boh; elefy = elefy * boh;
printf("a:%.1f ", aa);
printf(" binding-energy: %.4f ", binding);
printf(" elefx: %.3f ", elefx);
printf(" elefy: %.3f \n", elefy);
printf("nucforce: %.3f ", nucforce);
printf(" another x : %.2f ", anotherx);
printf(" de Broglie wave: %.3f \n", wave);
printf(" \n");
aa=aa+10;}
return 0;
}