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Physical and chemical stochastic processes described by the master equation are investi-
gated. The system-size expansion, called the Ω-expansion, trasnforms the master equation
to the corresponding Fokker-Planck equation. In this paper, we examine the entropy pro-
duction both for the master equation and for the corresponding Fokker-Planck equation. For
the master equation, the exact expression of the entropy production was recently derived
by Gaspard using the Kolmogorov-Sinai entropy (J.Stat.Phys., 117 (2004), 599; [Errata;
126 (2006), 1109 ]). Although Gaspard’s expression is derived from a stochastic consider-
ation, it should be noted that Gaspard’s expression conincides with the thermodynamical
expression. For the corresponding Fokker-Planck equation, by using the detailed imbal-
ance relation which appears in the derivation process of the fluctuation theorem through
the Onsger-Machlup theory, the entropy production is expressed in terms of the irreversible
circulation of fluctuation, which was proposed by Tomita and Tomita (Prog.Theor.Phys., 51

(1974), 1731; [Errata; 53 (1975), 1546b]). However, this expression for the corresponding
Fokker-Planck equation differs from that of the entropy production for the master equation.
This discrepancy is due to the difference between the master equation and the corresponding
Fokker-Planck equation, namely the former treats discrete events, but the latter equation
is an approximation of the former one. In fact, in the latter equation, the original discrete
events are smoothed out. To overcome this difficulty, we propose a hypothetical path weight
principle. By using this principle, the modified expression of the entropy production for the
corresponding Fokker-Planck equation coincides with that of the master equation (i.e., the
thermodynamical expression) for a simple chemical reaction system and a diffusion system.

§1. Introduction

Theories on nonequilibrium system near equilibrium are quite successful. In
fact, we have the landmarks in nonequilibrium statistical physics, such as the On-
sager’s reciprocal relation1),2) and the Kubo formula.3) However, we did not have
satisfactory theory on nonequilibrium steady states (NESS) until recent. Recently
the discovery of the fluctuation theorem focuses at the NESS.4)–9) The study of the
NESS is just a little revival. The fluctuation theorem gives us some clue to investi-
gate the NESS. But theorists consider individual problems in their perspective. A
unified viewpoint is lacking in the present study of the NESS.

In this paper, as a little attempt to improve the present situation, we aim at
constructing a theory of the NESS for certain stochastic process, i.e., the master
equation and the Fokker-Planck equation. The entropy production for these equa-
tions is examined. For the master equation, there is a pioneering work by Schnaken-
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berg.10) Schnakenberg derived the exact expression of the entropy production for
the master equation. Recently Gaspard rederived this equation starting from the
Kolmogorov-Sinai (KS) entropy.11) His formula is

〈σe〉 =
1

τ
∆Si = hR − h, (1.1)

where h is the KS-entropy and hR is the time-reversed KS-entropy. Throughout this
paper, we set the Boltzmann constant kB = 1. In this paper, we use the following
notations of the entropy production, namely the thermodynamical entropy produc-
tion, σe,th and the stochastic averaged entropy production, 〈σe〉. The expression,
eq. (1.1), coincides with Schnakenberg’s result. It should be noted that this expres-
sion agrees with the thermodynamical result. Thus, the entropy production defined
by the stochastic process coincides with the corresponding thermodynamical entropy
production.

In 1970’s, there were systematic studies on the master equation.12),13) Kubo,
Matsuo and Kitahara12) applied the system-size expansion, called the Ω-expansion,
which was developed by van Kampen,14) to the master equation. They derived the
corresponding Fokker-Planck equation and analyzed the behavior of the fluctuation.
Later Tomita and Tomita followed Kubo et al ’s work and emphasized importance
of circulation of fluctuation in nonequilibrium states.13) In particular, in the NESS,
they showed that the probability flow circulates. Successively, Tomita, Ohta, and
Tomita applied the Onsager-Machlup theory15),16) to the result of Ref. 13).17) Un-
fortunately, in Refs. 13) and 17), the entropy production was not investigated.

Recently, Taniguchi and Cohen developed the Onsager-Machlup theory to sev-
eral Langevin systems19)–21) and derived the fluctuation theorem for them. A key
relation for the fluctuation theorem is the detailed imbalance relation (they call it
the nonequilibrium detailed balance relation), i.e., the violation of the detailed bal-
ance relation. In this paper, with this key relation, we shall evaluate the entropy
production of the Fokker-Planck equation derived from the master equation. How-
ever, this entropy production does not coincide with the entropy production for the
original master equation. The reason will be examined in detail. The difference
of them is due to the fact that our master equation treats discrete events, but the
Fokker-Planck equation is an approximation of it. In the Fokker-Planck equation,
the original discrete events are smoothed out. In order to overcome this difficulty, we
propose the path weight principle. With this path weight principle, the modified en-
tropy production for the corresponding Fokker-Planck equation coincides with that
of the original master equation, which is just the thermodynamical result.

Organization of this paper is as follows. In Section 2, the master equation
is introduced and the expression of its entropy production is given. After that,
the master equation is transformed to the corresponding Fokker-Planck equation
by the Ω-expansion. In Section 3, the Onsager-Machlup theory is applied to the
corresponding Fokker-Planck equation. Calculating the path probability, the detailed
imbalance relation is derived. The entropy production term is determined. In Section
4, two example cases are considered. One is a chemical reaction network. The other is
one-dimensional diffusion system. For both cases, the entropy production disagrees
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with the thermodynamical result. In Section 5, in order to improve the result of
the previous section, the path weight principle is proposed and is applied to two
examples. As a result, the modified entropy production by the path weight principle
coincides with the thermodynamical result. In Section 6, we summarize the results.

§2. Master equation, Ω-expansion, and Fokker-Planck equation

In this section, we review Gaspard’s result11) and the results of 1970’s.12)–14),17)

Our starting point is the master equation. The master equation describes phys-
ical and chemical processes, such as diffusion system and chemical reaction network.
In Section 4, we give such examples. The master equation is given by

∂

∂t
P (X; t) = −

∑

X′

W (X → X′)P (X; t) +
∑

X′

W (X′ → X)P (X′; t), (2.1)

where X = (X1, X2, . . . , XN )t is the variable of the state. P (X; t) is the probability
distribution that the system is in the state X at time t. W (X → X′) is the transition
probability rate that the system performs a transition from the state X to the state
X′ in a unit time. The entropy production for this master equation was recently
calculated by Gaspard using the Kolmogorov-Sinai entropy.11) Its expression is
given by

〈σe〉 =
1

2

∑

X,X′

{
P st(X)W (X → X′) − P st(X′)W (X′ → X)

}
ln

P st(X)W (X → X′)

P st(X′)W (X′ → X)
,

(2.2)
where P st(X) is the probability distribution for the NESS. This expression is ob-
tained by rewriting eq. (1.1) and is equivalent to the expression originally obtained
by Schnakenberg.10) Thus, in this paper, we call the expression of eq. (2.2) the
Schnakenberg-Gaspard expression. In addition, it should be noted that this expres-
sion is nothing but the thermodynamical expression. For chemical reaction systems,
eq. (2.2) is rewritten into the form of the sum of the products of the reaction rate and
the affinity. Thus, the stochastic consideration gives the thermodynamical result for
this problem.

Here the connection between the Schnakenberg-Gaspard expression, i.e., eq. (2.2),
and the fluctuation theorem (i.e., the path probability ratio) is shown. The path
probability ratio between the forward path and the reversed path is given by

P st(A)Wpath(A → B)

P st(B)Wpath(B → A)
= exp[Σ(A → B)], (2.3)

where Σ(A → B) is the entropy production for the path A → B. This relation
is a key relation to show the fluctuation theorem. If the time-reversal symmetry is
satisfied, then the right hand side of eq. (2.3) is 1. Now we assume that the forward
path is given by

A → X(1) → X(2) → · · · → X(T−1) → B. (2.4)
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The path probability is given by the step-by-step transition probabilities as

Wpath(A → B) = W (A → X(1))W (X(1) → X(2)) · · ·W (X(T−1) → B), (2.5)

namely in a Markov chain. Let the transition probability

W (t)(A → X′) =
∑

X(1)

∑

X(2)

· · ·
∑

X(t−1)

Wpath(A → X′). (2.6)

The path probability ratio between the forward and reversed paths is given by

log
P st(A)Wpath(A → B)

P st(B)Wpath(B → A)

=

T−1∑

t=0

log
P st(X(t))W (X(t) → X(t+1))

P st(X(T−t))W (X(T−t) → X(T−t−1))

= log
P st(A)W (A → X(1))

P st(X(1))W (X(1) → A)
+ log

P st(X(T−1))W (X(T−1) → B)

P st(B)W (B → X(T−1))

+

T−2∑

t=1

log
P st(X(t))W (X(t) → X(t+1))

P st(X(t+1))W (X(t+1) → X(t))
. (2.7)

Before taking the limit T → ∞, the path average is taken. Then we have

〈Σ(A → B)〉 = (both end terms)

+

T−2∑

t=1

∑

all paths

P st(A)W (t)(A → X(t))W (X(t) → X(t+1))

×W (X(t+1) → B) log
P st(X(t))W (X(t) → X(t+1))

P st(X(t+1))W (X(t+1) → X(t))
. (2.8)

For the NESS, we assume that
∑

A

P st(A)W (t)(A → X) = P st(X). (2.9)

We use the Bayes relation

W (X(t+1) → B) = P st(X(t+1))−1W (X(t+1) → B)P st(B), (2.10)

and ∑

B

W (X(t+1) → B)P st(B) = P st(X(t+1)). (2.11)

where the bar denotes the destined conditional probability. Thus finally the average
entropy production is given by

〈σe〉 = lim
T→∞

1

T
〈Σ(A → B)〉

=
∑

X,X′

P st(X)W (X → X′) log
P st(X)W (X → X′)

P st(X′)W (X′ → X)
. (2.12)
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Equation (2.12) is nothing but the Schnakenberg-Gaspard expression i.e., eq. (2.2).
Throughout this paper, we call this relation the detailed imbalance relation. The fluc-
tuation theorem mentions the asymptotic behavior of long-time fluctuation. How-
ever, note that the entropy production in the NESS is determined by the detailed
imbalance of short-time fluctuation in this formula.

As done in Refs. 14) and 12), the Ω-expansion is used for eq. (2.1). Here Ω
is a variable which is related to the system size. For chemical reaction systems, Ω
should be the order of the Avogadro number or the volume of the system. We set

W (X → X + r) = Ω w

(
X

Ω
; r

)
. (2.13)

and scale the variable X,

x =
X

Ω
. (2.14)

The master equation is rewritten as

∂

∂t
p(x; t) = −Ω

∑

r

(1 − e−εr· ∂
∂x )w(x; r)p(x; t), (2.15)

where ε = 1/Ω is used. The probability distribution is now scaled as

ΩNP (X; t) = p(x; t). (2.16)

Expanding the right hand side of eq. (2.15) in terms of ε, we obtain the following
equation.

∂

∂t
p(x; t) =

∞∑

n=1

εn−1

n!

(
−

∂

∂x

)n

· cn(x)p(x; t), (2.17)

where
cn(x) =

∑

r

(r)nw(x; r), (2.18)

is the nth moments of the transition probability rate. In particular, c1(x) and c2(x)
are given by

c1,k(x) =
∑

r

rk w(x; r), c2,kl(x) =
∑

r

rkrl w(x; r). (2.19)

Reserving the lowest order of ε, we obtain the following equation:

∂

∂t
p(x; t) = −

∂

∂x
· c1(x)p(x; t) +

ε

2

∂

∂x

∂

∂x
· c2(x)p(x; t). (2.20)

Here the x-dependence of c2(x) is explicitly considered. Then we obtain

∂

∂t
p(x; t) = −

∂

∂x
·

[
c1(x) −

ε

2
h(x) −

ε

2
c2(x) ·

∂

∂x

]
p(x; t), (2.21)

where

h(x) = c2(x)·

←
∂

∂x
. (2.22)
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Here the term εh(x)/2 can be neglected, because compared with c1, it is the order
of ε. We set for the later use∗):

D(x) =
1

2
c2(x), (2.23)

which is the diffusion constant matrix in the probability space. If the fluctuation is
assumed to be normal,12) i.e.,

p(x; t) = A(x; t)e−Ωφ(x;t), (2.24)

the probability distribution is well approximated as Gaussian one in the order of ε,

φ(x; t) =
1

2
(x − y(t))t · σ−1 · (x − y(t)). (2.25)

Then we obtain the time-evolution of y(t) and σ(t) as follows:

dy

dt
= c1(y), (2.26)

dσ

dt
= K · σ + σ · K̃ + c2(y), (2.27)

where

Kkl(y) =
∂c1,k(y)

∂yl
. (2.28)

The matrix elements of σ are given by

σij =

∫
dξ ξiξj p̃(ξ; t), (2.29)

where
x = y(t) + ε1/2ξ, (2.30)

and p̃(ξ; t) is the probability distribution for ξ. Thus, σ and g correspond to the
definitions in Ref. 13). Solving eq. (2.26) and inserting its solution into D(x), we
obtain y(t) and D(t). Therefore, as a result, we obtain the Fokker-Planck equation:

∂

∂t
p(x; t) = −

∂

∂x
·

[
c1(x) − εD(t) ·

∂

∂x

]
p(x; t). (2.31)

Hereafter we investigate this Fokker-Planck equation in detail.
For eq. (2.31), several interesting properties for the NESS are known.13) The

probability distribution for the NESS is given by

pst(x) =
1√

(2πε)N det(σst)
exp[−Ωφ(x)], (2.32)

where

φ(x) =
1

2
(x − 〈x〉)t · gst · (x − 〈x〉), (2.33)

∗) Here we used the standard definition of D, which is different from that in Ref. 13) by the

factor 1/2.
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and
gst = (σst)−1. (2.34)

σst is the variance matrix of the probability distribution of the NESS. In this case,
a phenomenological equation is given by

X = −
∂φ

∂x

= −gst · (x − 〈x〉). (2.35)

If c1(x) is
c1(x) = Kst · x + c, (2.36)

(Two examples in Section 4 are the case.), we have

ẋ = Kst · x + c

= Kst · (x− 〈x〉)

= −L ·X. (2.37)

Here we have used the fact that ẋ = 0 ⇒ 〈x〉 = −(Kst)−1 · c. L is the Onsager
coefficient. Also we have the following relations.13)

L = −Kst(gst)−1 = Dst + α, (2.38)

α = −Kstσst −Dst

=
1

2
(σstK̃st −Kstσst). (2.39)

The matrix α vanishes for the case that the detailed balance is satisfied, i.e., in
equilibrium. However, for the NESS, α is non-zero, in general. In addition, α is an
anti-symmetric matrix. As shown in Ref. 13), α is a measure of the circulation of
fluctuation. Therefore, α is called the irreversible circulation of fluctuation.

Now we set
v(x) = ẏ(x) + Dst · ∇φ(x). (2.40)

We call the vector v the irreversible circulation velocity. If ẏ(x) = Kst · x + c, the
irreversible circulation velocity is rewritten into

v(x) = Kst · (x − 〈x〉) + Dst · ∇φ(x)

= (Kst + Dstgst) · (x − 〈x〉)

= −α · ∇φ(x)

= α ·X(x). (2.41)

Therefore, we have
v(x) = j(x)/P st(x). (2.42)

Here j(x) is the current of the probability. This relation was also obtained in Ref. 22).
In addition, the irreversible circulation α is related to the breaking of the

fluctuation-dissipation theorem. If the fluctuation-dissipation theorem is satisfied,
i.e., α = 0,

−Kstσst = Dst. (2.43)

The breaking of the fluctuation-dissipation theorem is recently re-recognized for the
corresponding Langevin system.18)
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§3. Path probability and detailed imbalance relation

Following Tomita, Ohta, and Tomita,17) we apply the Onsager-Machlup the-
ory15),16) to the Fokker-Planck equation, eq. (2.31). The time-evolution of the prob-
ability distribution can be written in terms of the transition probability.

p(x; t) =

∫
dx′ F

(
x x′

t t0

)
p(x′; t0) (3.1)

F (. . . ) is the transition probability. As a short time propagation, the transition
probability is evaluated as

F

(
x + ∆x x

t + ∆t t

)

=
1√

(2π)N det(D(t))(ε∆t)N

× exp

[
−

∆tΩ

4

(
∆x

∆t
− ẏ(x)

)t

· R ·

(
∆x

∆t
− ẏ(x)

)]
+ O((∆t)2), (3.2)

where R = D−1. From eq. (3.2), the Lagrangian for the path integral (i.e., the
Onsager-Machlup function) is given by

L(ẋ,x) = −
Ω

4
(ẋ − ẏ(x))t · R · (ẋ − ẏ(x)) . (3.3)

The path probability is given by

Wpath({x};A → B) = exp

[∫ t

t0

ds L(ẋ∗(s),x∗(s))

]
, (3.4)

where x∗(s) is to be taken along a given path A → B. We set A = x(t0) and
B = x(t). In order to calculate the path probability ratio, we evaluate the difference
of the Langrangians.

L(ẋ,x) −L(−ẋ,x) = Ωẋ · R · ẏ(x) (3.5)

Here we assume that the probability distribution in the NESS is given by

pst(x) ∝ exp[−Ωφ(x)]. (3.6)

Thus we have

L(ẋ,x) −L(−ẋ,x) = −Ωφ̇(x) + Ωẋ · Rst ·
[
ẏ(x) + Dst · ∇φ(x)

]
. (3.7)

We have used the following relation φ̇(x) = ∇φ · ẋ. Then for the NESS, we obtain

P st(A)Wpath({x};A → B)

P st(B)Wpath({x};B → A)
= exp

[
Ω

∫ B

A
dt ẋt ·Rst · v

]
. (3.8)
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Similar relations were also obtained for the Langevin systems by Taniguchi and
Cohen19)–21)∗), Seifert,22) and Chernyak et al.23) If the detailed balance relation is
satisfied, the right hand side of eq. (3.8) is equal to 1, i.e., it is in equilibrium and
the entropy production is zero, because α = 0. It is known that compared with
the Onsager-Machlup theory, the argument of the exponential function is related to
the entropy production. Therefore, the argument of the exponential function in the
right hand side is the entropy production rate for the path A → B. Thus, finally we
obtain a stochastic form of the entropy production rate,

σe(ẋ,x) = Ω ẋt · Rst · v(x). (3.9)

Next consider the average value of the entropy production term. As in the
Onsger-Machlup theory, the most probable paths are categorized into two types,
i.e., the forward evolution and the reversed evolution. For the forward evolution, the
most probable path is given by

ẋ = Kst · x + c = Kst · (x− 〈x〉). (3.10)

Inserting eq. (3.10) into eq. (3.9), we have

σe(x) = Ω {Kst · (x − 〈x〉)}t ·Rstα · X(x). (3.11)

Now taking an average over the NESS, we finally obtain

〈σe〉 =

∫
dx P st(x)σe(x)

= −Tr(αRstαgst). (3.12)

This is the central result of this section, i.e., another form of the detailed imbalance
relation. Note that the entropy production is expressed in terms of the irreversible
circulation α. If in equilibrium, i.e., the detailed balance is satisfied, α is zero. Then,
the entropy production vanishes. This is consistent with physical requirement. It is
important that the entropy production is expressed in a quadratic form of α.

§4. Examples

In this section, we check whether the derived expression of the entropy pro-
duction coincides with the thermodynamical expression or not. Two examples are
considered. One is a chemical reaction network. The other is a one-dimensional
diffusion system.

4.1. Chemical reaction network

Let us consider the following simple case:

A
κ


κ

X
κ


κ

Y
κ


κ

B. (4.1)

∗) They call this relation the nonequilibrium detailed balance relation.
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Here all rate constants are equal to κ. In order to maintain the steady state, the
concentrations of the chemical species A and B are kept constant by reservoirs. This
chemical reaction system is linear. Using eqs. (2.28) and (2.36), the matrix Kst and
the vector c are given by

Kst = κ

(
−2 1
1 −2

)
, c = κ

(
〈a〉
〈b〉

)
, (4.2)

where 〈a〉 = 〈A〉/Ω and 〈b〉 = 〈B〉/Ω. Using eq. (2.23) for Dst, eq. (2.28) for Kst,
and making zero the right hand side of eq. (2.27) for σst, we obtain the matrix σst.

σst =
1

3

(
2〈a〉 + 〈b〉 0

0 〈a〉 + 2〈b〉

)
. (4.3)

Using eq. (2.39), the matrix α is given by

α =
κ(〈a〉 − 〈b〉)

6

(
0 1
−1 0

)
. (4.4)

The entropy production derived from the Fokker-Planck equation becomes

〈σe〉 = −Tr(αRstαgst)

= κ
4(〈a〉 − 〈b〉)2

23〈a〉2 + 62〈a〉〈b〉 + 23〈b〉2

≈
4κ(〈a〉 − 〈b〉)2

27(〈a〉 + 〈b〉)2
. (4.5)

The last line is the approximation near equilibrium, i.e., 〈a〉 ∼ 〈b〉. We have employed
an expansion in a symmetric form.

In the thermodynamical consideration, the entropy production is given by

σe,th =
3∑

i=1

Ji
Ai

T
, (4.6)

where

J1 = κ(〈A〉 − 〈X〉), A1 = T log
〈A〉

〈X〉
, (4.7)

J2 = κ(〈X〉 − 〈Y 〉), A2 = T log
〈X〉

〈Y 〉
, (4.8)

J3 = κ(〈Y 〉 − 〈B〉), A3 = T log
〈Y 〉

〈B〉
. (4.9)

Ji is the reaction rate of the reaction i. Ai is the affinity of the reaction i. This
expression is equivalent to eq. (2.2). Near equilibrium case, the entropy production
is

σe,th ≈
2κΩ(〈a〉 − 〈b〉)2

3(〈a〉 + 〈b〉)
. (4.10)

The result of eq. (4.5) disagrees with the thermodynamical result of eq. (4.10).
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4.2. One-dimensional diffusion system

In this subsection, one-dimensional diffusion system is considered. The system
is a pipe with the cross section Σ. This pipe is divided into L cells of the length
λ. Thus the volume of each cell is Ω = λΣ. Particles exhibit random walk between
cells. All rate constants are given by κ. The reaction is represented as

A
κ


κ

N1
κ


κ

N2
κ


κ

. . .
κ


κ

NL−1
κ


κ

B. (4.11)

The time evolution of the population Ni is determined by the following rate equation:

Ṅi = κ(Ni+1 − 2Ni + Ni−1), (4.12)

and at both edges,
N0 = A, NL = B. (4.13)

At the edges, the number of the particles is supplied to be constant by the reservoirs.
We denote the density of the particle in the ith cell by ni, i.e., ni = Ni/Ω.

ṅi = κ(ni+1 − 2ni + ni−1),

≈ κλ2∇2n. (4.14)

Thus the spatial diffusion coefficient is given by

D = κλ2. (4.15)

Now let us consider the master equation for this system. The transition probabilities
are given by

W (. . . , Ni, Ni+1, · · · → . . . , Ni − 1, Ni+1 + 1, . . . ) = κNi (4.16)

W (. . . , Ni, Ni+1, · · · → . . . , Ni + 1, Ni+1 − 1, . . . ) = κNi+1 (4.17)

This problem was analyzed in the context of the fluctuation theorem.24) The steady
solution of the master equation is multi-Poissonian.

P st(N1, N2, . . . , NL−1) =
L−1∏

i=1

e−〈Ni〉
〈Ni〉

Ni

Ni!
. (4.18)

The thermodynamical entropy production is given by

σe,th =
κ(〈A〉 − 〈B〉)

L
log

〈A〉

〈B〉
. (4.19)

This equation is equivalent to the Schnakenberg-Gaspard expression, eq. (2.2). One
can confirm that inserting eq. (4.18) into eq. (2.2), eq. (4.19) is satisfied. In the
continuous limit, we have

σe,th = ΣD

∫ Lλ

0
dx

|∇n(x)|2

n(x)
(4.20)
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where Σ dx is the volume element here. In the last line, we employed the linear
approximation near equilibrium.

Using eq. (2.19), the moments are calculated as

c1,i = κ(ni+1 − 2ni + ni−1), (4.21)

c2,i,i = κ(ni+1 + 2ni + ni−1), (4.22)

c2,i,i+1 = c2,i+1,i = κ(ni + ni+1). (4.23)

For c2, other entries are zero. The matrices Kst and Dst are given by

Kst = κ




−2 1 0 · · · . . . 0
1 −2 1 · · · · · · 0

0 1 −2
. . . · · · 0

... · · ·
. . .

. . .
. . .

...
0 · · · · · · 1 −2 1
0 · · · · · · 0 1 −2




. (4.24)

and

Dst
i,i =

κ

2
(nst

i−1 + 2nst
i + nst

i+1) = 2κnst
i , (4.25)

Dst
i,i+1 = Dst

i+1,i = −
κ

2
(nst

i + nst
i+1). (4.26)

For Dst, other entries are zero. We used the fact that the steady solution is given by

nst
i = n0 − iλ|∇n|. (4.27)

The variance matrix σst and the circulation matrix α are given by

σst =




nst
1 0 0 . . . 0
0 nst

2 0 . . . 0
...

. . .
...

0 . . . nst
L−2 0

0 . . . 0 nst
L−1




, (4.28)

and

α =
1

2
(σstK̃st −Kstσst)

=
κλ∇n

2




0 1 0 · · · . . . 0
−1 0 1 · · · · · · 0

0 −1 0
. . . · · · 0

... · · ·
. . .

. . .
. . .

...
0 · · · · · · −1 0 1
0 · · · · · · 0 −1 0




. (4.29)
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The entropy production for the corresponding Fokker-Planck equation is given by
eq. (3.12). Then we have

〈σe〉 = −Tr(αRstαgst)

≈
κλ2|∇n|2

4n2

2(L − 2)(L − 1)

L

=
D

2λn

∫ Lλ

0
dx

|∇n(x)|2

n(x)
(L → ∞). (4.30)

This result does not agree with the thermodynamical result of eq. (4.20). In partic-
ular, the order of eq. (4.30) is different by the factor of 1/Ω compared with that of
eq. (4.20) and the concentration dependence disagrees.

§5. Path weight principle

As shown in the previous section, the entropy production derived directly from
our Fokker-Planck equation disagrees with that of the original master equation and
thermodynamical one. This discrepancy should be examined.

First, let us consider the reason of this discrepancy. Our original master equation
describes the phenomena of the discrete jump events such as the occasional collisions
in the chemical reaction system. On the other hand, the corresponding Fokker-
Planck equation treats the averaged continuous evolution of the original physical
random process. This relation is just similar to that between a random walk and a
Brownian motion which corresponds to the former. Note that the different random
walks, say, (i) random jump ±∆ at each mean interval τ0, and (ii) random jump
±2∆ at each mean interval 4τ0, are described by the same Brownian motion with
the diffusion coefficient D = ∆2/2τ0. However, the entropy production differs from
each other evidently, i.e., that of the case (i) is four times larger than that of (ii).
This fact tells us that the Fokker-Planck equation and the Brownian motion are not
used for the purpose to calculate the correct entropy production, at least, when the
original master equation describes a discrete stochastic process. However they well
describe the long time evolution of the probability itself due to the central limit
theorem. The entropy production is due to the short time behavior of fluctuations,
i.e., the detailed imbalance relation. Entropy is created at each discrete jump process
such as reactive collisions among atoms or molecules in the chemical reaction. Let
us call it the elementary process of entropy production.

Secondly, let us introduce the path weight principle, which is a kind of corre-
spondence rule for recovering this difficulty. The above consideration suggests us
that in order to calculate a correct entropy production in the present Fokker-Planck
scheme, we should take account of the information how many elementary processes
are included in a given continuous stochastic path.

For example, let us consider a chemical reaction network,

ρth reaction:
∑

i

νρiXi

κρ



κρ

∑

i

νρiXi. (5.1)



14 H.Tomita and M.M.Sano

The elementary random walk is each reactive collision which causes ∆Yρ = ±1 in a
mean interval κ−1

ρ (κ−1
ρ ), where Yρ is a reaction coordinate of the ρth reaction defined

by

δXi =
∑

ρ

(νρi − νρi)δYρ. (5.2)

With use of the reaction coordinates as the set of stochastic variables, the frequency
of the plus and minus reactions in the ρth-direction per unit time is related to the
second moment of the transition probability,

2ΩD′
st
ρ = W (∆Yρ = +1)(+1)2 + W (∆Yρ = −1)(−1)2, (5.3)

when the reaction flow can be neglected in near equilibrium situations. This condi-
tion will be satisfied in the linearized, local equilibrium estimation below.

Thus the diffusion constants directly give the number of elementary random
walks in a unit time, if the reaction rates satisfy κρ = κρ. However, it is difficult to
find a general correspondence rule for the population coordinate {Xi} except for the
following special cases.

5.1. One-dimensional diffusion system

In the diffusion model used in Section 4, the rate constants κρ’s are assumed to
be a constant, κ, i.e.,

ith reaction: Ni
κ


κ

Ni+1, (i = 0, 1, 2, . . . , L − 1), (5.4)

where N0 = A and NL = B. The diffusion matrix in the reaction coordinates is given
by a diagonal matrix {D′sti δij}, where

D′
st
i =

κ

2
(nst

i + nst
i+1), (5.5)

with ni = Ni/Ω. The elementary process in this case is a jump of one particle
in a given cell to the left or the right cells in the mean interval time, κ−1, that
is, the uniform random walk in the one-dimensional real space. Therefore, at least
in this special case, the number of the elementary jump processes included in a
continuous unit-time path of the ith-direction is given by the ratio, 2ΩD ′sti /κ. Then
the correspondence rule in this case is given by

η̇i −→ 2κ−1ΩD′
st
i η̇i, (5.6)

where ηρ = Yρ/Ω. Thus, the diffusion constant can be used for the path weight.
In the concentration space {ni}, let us assume that the same correspondence

rule can be applied in the principal-axis space where the diffusion matrix {D st
ij} is

diagonalized, though we have no definite principle to determine the coefficient κ−1

itself in the present case. Note that this space is not necessarily equivalent to the
reaction coordinate space {ηi}. We have linear relations,

ṅi =
∑

ρ

(δρ,i−1 − δρ,i)η̇ρ, (5.7)
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and
Dst

ij =
∑

ρ

(δρ,i−1 − δρ,i)(δρ,j−1 − δρ,j)D
′st
ρ , (5.8)

where δρ,i is the usual Kronecker’s symbol. However, this transformation is not repre-
setned as a square matrix, i.e., not invertible and not an orthogonal transformation,
Thus we get a hypothetical correspondence rule in the concentration space

ṅi −→ 2κ−1ΩDst
ij ṅj. (5.9)

Let us call it the path weight principle.
As a conclusion, we have a corrected expression for the entropy production rate,

〈σe〉
′ = −2κ−1Ω Tr(αgstα). (5.10)

Here the prime means that the entropy production is modified by the path weight
principle. Using the explicit forms of α and gst in Section 4, we find a final result,

〈σe〉
′ = Σ

∫ Lλ

0

D|∇n(x)|2

n(x)
dx, (5.11)

in the continuum limit L → ∞, where D = κλ2 is the spatial diffusion constant
again. This coincides just with the thermodynamic result, i.e., eq. (4.20).

5.2. Chemical reaction network

The path weight principle may be applied to the simple chemical reaction (L = 3)
in Section 4.1 also. An easy result is given by

〈σe〉
′ =

2κΩ(〈a〉 − 〈b〉)2

9(〈a〉 + 〈b〉)
, (5.12)

in a symetrized form near equilibrium. Compared with eq. (4.10), there is a difference
of the factor 1/3.

The reason is very evident. We should treat the boundary effect more carefully
for finite L. In the present case there are three different random walks in xy-plane,
i.e. two boundary modes Ẏ0 along x-axis and Ẏ2 along y-axis in addition to the
diagonal mode Ẏ1 in the direction (1,−1). Therefore, the elementary processes are
not isotropic in xy-plane.

Instead of performing this ambiguous transformation, the reason of the factor
1/3 may be interpreted as that the irreversible circulations corresponding to both
end reactions have not been taken into account in the present scheme. It can be
easily shown that this factor 1/3 is removed exactly when the variables A and B are
added in the set of stochastic variables as

Ȧ = κ(X − A) − c, (5.13)

Ẋ = κ(A − 2X + Y ), (5.14)

Ẏ = κ(X − 2Y + B), (5.15)

Ḃ = κ(Y − B) − c′, (5.16)
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where c and c′ are parameters controlled by external equilibrium reservoirs to keep
A and B constant. Here c = κ(〈X〉−A) and c′ = κ(〈Y 〉−B). Except for the matrix
Kst is modified slightly as

Kst = κ




−1 1 0 0
1 −2 1 0
0 1 −2 1
0 0 1 −1


 , (5.17)

other quantities are just the same as those given in Section 4.2 for L − 1 = 4.

§6. Concluding remarks

We have shown that the entropy production of the Fokker-Planck equation de-
rived from the master equation differs from that for the original master equation.
The reason of this is clearly due to the fact that the master equation treats discrete
events, but the Fokker-Planck equation is an approximation of the master equation.
In the Fokker-Planck equation, the original discrete events are smoothed out. To
evaluate the entropy production, one have to recover the discreteness of the events
in the treatment of the corresponding Fokker-Planck equation. In order to overcome
this problem, we have proposed the path weight principle. The entropy production
from the corresponding Fokker-Planck equation is modified by multiplying the dif-
fusion coefficient. For two simple examples, it has been demonstrated that the path
weight principle yields the entropy production for the original master equation.

At present, we do not know whether the path weight principle can be applied for
any kinds of master equations or not. But we believe that the path weight principle
can be applied, at least, to the cases that jumps in the transitions are small compared
with Ω, namely |∆| ∼ 1.
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